搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究

刘迎 陈志华 郑纯

引用本文:
Citation:

黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究

刘迎, 陈志华, 郑纯
cstr: 32037.14.aps.68.20181747

Kelvin-Helmholtz instability in anisotropic viscous magnetized fluid

Liu Ying, Chen Zhi-Hua, Zheng Chun
cstr: 32037.14.aps.68.20181747
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 利用corner transport upwind和constrained transport算法求解非理想磁流体动力学方程组, 对匀强平行磁场作用下, 黏性各向异性等离子体自由剪切层中的Kelvin-Helmholtz不稳定性进行了数值模拟. 从流动结构、涡结构演化、磁场分布、横向磁压力、抗弯磁张力等角度对各向同性和各向异性黏性算例结果进行了讨论, 分析了黏性各向异性对Kelvin-Helmholtz不稳定性的影响. 结果表明, 黏性各向异性比黏性各向同性更利于流动的稳定. 其稳定性作用是由于磁感线方向上剪切速率降低导致界面卷起程度和圈数的降低, 并使卷起结构中小涡产生增殖、合并, 破坏了涡的常规增长, 从而导致流动的稳定. 黏性各向异性对横向磁压力的影响比对抗弯磁张力更大.
    Kelvin-Helmholtz instability in anisotropic viscous fluid with uniform density in the presence of magnetic field is simulated through solving the non-ideal magnetohydrodynamic equations. The magnetic field is uniform and parallel to the stream. The magnetohydrodynamic equations are solved by corner transport upwind algorithm and constrained transport algorithm. In this paper, the influence of viscous anisotropy on Kelvin-Helmholtz instability is studied. The viscous anisotropy is embodied in the direction of the magnetic field, that is, viscosity parallel to the direction of the magnetic field line is much larger than that in the other directions. The results in the isotropic and the anisotropic viscous cases are compared from the aspects of flow structure, vortex evolution, and magnetic field distribution. It shows that the viscous anisotropy is more advantageous to the stability in a magnetized shear layer than the viscous isotropy. The flow structure evolves similarly in large scales but vortices evolve differently in small scales. Due to the decrease of the shear rate in the direction of the magnetic field lines, the rolling-up degree of interface and the number of laps decrease; the multiplication and merging of small vortices in the rolled-up structure destroy the regular growth of the vortex, which contributes to the stability of the flow. The increase of the magnetic energy at the sheared interface slows down effectively by the viscous anisotropy, which weakens the growth of the transverse magnetic pressure and anti-bending magnetic tension. However, viscous anisotropy shows much greater influence on the transverse magnetic pressure than on the anti-bending magnetic tension. The total enstrophy decreases slowly in viscous isotropy and anisotropy case. It increases quickly in late time in the former case, but is heavily suppressed in the latter case.
      通信作者: 陈志华, chenzh@mail.njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11502117, 11272156)资助的课题.
      Corresponding author: Chen Zhi-Hua, chenzh@mail.njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11502117, 11272156).
    [1]

    Michikoshi S, Inutsuka, S I 2006 Astrophys. J. 641 1131Google Scholar

    [2]

    Latter H N, Papaloizou J 2018 Mon. Not. R. Astron. Soc. 474 3110Google Scholar

    [3]

    Masson A, Nykyri K 2018 Space Sci. Rev. 214 71Google Scholar

    [4]

    Faganello M, Califano F 2017 J. Plasma Phys. 83 535830601Google Scholar

    [5]

    Ma X Y, Otto A, Delamere P A 2014 J. Geophys. Res.: Space 119 781Google Scholar

    [6]

    Srinivasan B, Tang X Z 2013 Phys. Plasmas 20 056307Google Scholar

    [7]

    Wang L F, Ye W H, He X T, et al 2017 Sci. China: Phys. Mech. Astron. 60 055201Google Scholar

    [8]

    Zhou Y 2017 Phys. Rep. 720-722 1Google Scholar

    [9]

    Rao P A, Fuelberg H E 2000 Mon. Weather Rev. 128 3437Google Scholar

    [10]

    Soloviev A V, Lukas R, Donelan M A, Haus B K, Ginis I 2017 J. Geophys. Res.: Oceans 122 10174Google Scholar

    [11]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press)

    [12]

    Ho C M, Huerre P 1984 Annu. Rev. Fluid Mech. 16 365Google Scholar

    [13]

    Winant C D, Browand F K 1974 J. Fluid Mech. 63 237Google Scholar

    [14]

    Brown G L, Roshko A 1986 J. Fluid Mech. 170 499Google Scholar

    [15]

    王立锋, 叶文华, 李英骏 2008 物理学报 57 3038Google Scholar

    Wang L F, Ye W H, Li Y J 2008 Acta Phys. Sin. 57 3038Google Scholar

    [16]

    王立锋, 叶文华, 范征锋, 孙彦乾, 郑炳松, 李英骏 2009 物理学报 58 6381Google Scholar

    Wang L F, Ye W H, Fan Z F, Sun Y Q, Zheng B S, Li Y J 2009 Acta Phys. Sin. 58 6381Google Scholar

    [17]

    Talwar S P 1965 Phys. Fluids 8 1295Google Scholar

    [18]

    Duhau S, Gratton J 1975 J. Plasma Phys. 13 451Google Scholar

    [19]

    Srivastava K M, Vyas D N 1979 Astrophys. Space Sci. 62 353Google Scholar

    [20]

    Choudhury S R, Patel V L 1985 Phys. Fluids 28 3292Google Scholar

    [21]

    Choudhury S R 1986 Phys. Fluids 29 1509Google Scholar

    [22]

    Ruderman M S, Verwichte E, Erdélyi R, Goossens M 1996 J. Plasma Phys. 56 285Google Scholar

    [23]

    Brown K G, Choudhury S R 2002 Q. Appl. Math. 60 601Google Scholar

    [24]

    Prajapati R P, Chhajlani R K 2010 Phys. Plasmas 17 112108Google Scholar

    [25]

    Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123Google Scholar

    [26]

    Liu C Q, Wang Y Q, Yang Y, Duan Z W 2016 Sci. China: Phys. Mech. Astron. 59 684711Google Scholar

    [27]

    Liu Y, Chen Z H, Zhang H H, Lin Z Y 2018 Phys. Fluids 30 044102Google Scholar

  • 图 1  计算模型

    Fig. 1.  Sketch of the computational model.

    图 2  不同时刻自由剪切层示踪剂浓度场 (a)各向同性黏性(Re = 105); (b) 各向异性黏性(Re0 = 105, Re|| = 100)

    Fig. 2.  Tracer concentration field at different times: (a) Isotropic viscous case (Re = 105); (b) anisotropic viscous case (Re0 = 105, Re|| = 100).

    图 3  不同时刻, 各向同性黏性(Re = 105)算例涡结构云图及流线 (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10

    Fig. 3.  Rortex field with streamlines at different times in isotropic viscous fluid (Re = 105): (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10.

    图 4  不同时刻各向异性黏性(Re0 = 105, Re|| = 100)算例涡结构云图及流线 (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10

    Fig. 4.  Rortex field with streamlines at different times in anisotropic viscous fluid (Re0 =105, Re|| = 100): (a) t = 5.5; (b) t = 7.0; (c) t = 7.5; (d) t = 8.0; (e) t = 9.0; (f) t = 10.

    图 5  不同时刻剪切层中磁场云图和磁感线 (a)各向同性黏性(Re = 105); (b) 各向异性黏性(Re0 = 105, Re|| = 100)

    Fig. 5.  Magnetic field with field lines at different times: (a) Isotropic viscous case (Re = 105); (b) anisotropic viscous case (Re0 = 105, Re|| = 100)

    图 6  纵向总动能随时间的变化

    Fig. 6.  Evolution of the longitudinal total kinetic energy Eky .

    图 7  平均磁能密度放大倍数随时间的变化

    Fig. 7.  Evolution of the amplification factor of average magnetic energy.

    图 8  平均横向磁压力和抗弯磁张力随时间的变化 (a) 横向磁压力; (b) 抗弯磁张力

    Fig. 8.  Evolution of the average transverse magnetic pressure and anti-bending magnetic tension: (a) Transverse magnetic pressure; (b) anti-bending magnetic tension.

    图 9  流场总涡度拟能随时间的变化

    Fig. 9.  Evolution of the total enstrophy.

  • [1]

    Michikoshi S, Inutsuka, S I 2006 Astrophys. J. 641 1131Google Scholar

    [2]

    Latter H N, Papaloizou J 2018 Mon. Not. R. Astron. Soc. 474 3110Google Scholar

    [3]

    Masson A, Nykyri K 2018 Space Sci. Rev. 214 71Google Scholar

    [4]

    Faganello M, Califano F 2017 J. Plasma Phys. 83 535830601Google Scholar

    [5]

    Ma X Y, Otto A, Delamere P A 2014 J. Geophys. Res.: Space 119 781Google Scholar

    [6]

    Srinivasan B, Tang X Z 2013 Phys. Plasmas 20 056307Google Scholar

    [7]

    Wang L F, Ye W H, He X T, et al 2017 Sci. China: Phys. Mech. Astron. 60 055201Google Scholar

    [8]

    Zhou Y 2017 Phys. Rep. 720-722 1Google Scholar

    [9]

    Rao P A, Fuelberg H E 2000 Mon. Weather Rev. 128 3437Google Scholar

    [10]

    Soloviev A V, Lukas R, Donelan M A, Haus B K, Ginis I 2017 J. Geophys. Res.: Oceans 122 10174Google Scholar

    [11]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press)

    [12]

    Ho C M, Huerre P 1984 Annu. Rev. Fluid Mech. 16 365Google Scholar

    [13]

    Winant C D, Browand F K 1974 J. Fluid Mech. 63 237Google Scholar

    [14]

    Brown G L, Roshko A 1986 J. Fluid Mech. 170 499Google Scholar

    [15]

    王立锋, 叶文华, 李英骏 2008 物理学报 57 3038Google Scholar

    Wang L F, Ye W H, Li Y J 2008 Acta Phys. Sin. 57 3038Google Scholar

    [16]

    王立锋, 叶文华, 范征锋, 孙彦乾, 郑炳松, 李英骏 2009 物理学报 58 6381Google Scholar

    Wang L F, Ye W H, Fan Z F, Sun Y Q, Zheng B S, Li Y J 2009 Acta Phys. Sin. 58 6381Google Scholar

    [17]

    Talwar S P 1965 Phys. Fluids 8 1295Google Scholar

    [18]

    Duhau S, Gratton J 1975 J. Plasma Phys. 13 451Google Scholar

    [19]

    Srivastava K M, Vyas D N 1979 Astrophys. Space Sci. 62 353Google Scholar

    [20]

    Choudhury S R, Patel V L 1985 Phys. Fluids 28 3292Google Scholar

    [21]

    Choudhury S R 1986 Phys. Fluids 29 1509Google Scholar

    [22]

    Ruderman M S, Verwichte E, Erdélyi R, Goossens M 1996 J. Plasma Phys. 56 285Google Scholar

    [23]

    Brown K G, Choudhury S R 2002 Q. Appl. Math. 60 601Google Scholar

    [24]

    Prajapati R P, Chhajlani R K 2010 Phys. Plasmas 17 112108Google Scholar

    [25]

    Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123Google Scholar

    [26]

    Liu C Q, Wang Y Q, Yang Y, Duan Z W 2016 Sci. China: Phys. Mech. Astron. 59 684711Google Scholar

    [27]

    Liu Y, Chen Z H, Zhang H H, Lin Z Y 2018 Phys. Fluids 30 044102Google Scholar

计量
  • 文章访问数:  15366
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-21
  • 修回日期:  2018-11-19
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回