搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电流积分计算磁矢量势修正的低磁雷诺数方法

丁明松 江涛 刘庆宗 董维中 高铁锁 傅杨奥骁

引用本文:
Citation:

基于电流积分计算磁矢量势修正的低磁雷诺数方法

丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁

An improved low magnetic Reynolds magnetohydrodynamic method based on computing induced magnetic vector potential by integrating induced current

Ding Ming-Song, Jiang Tao, Liu Qing-Zong, Dong Wei-Zhong, Gao Tie-Suo, Fu Yang-Aoxiao
PDF
HTML
导出引用
  • 针对低磁雷诺数方法的适用性问题, 分析了当前低磁雷诺数条件应用上存在分歧以及全磁流体力学方法在高超声速领域局限性产生的原理. 在低磁雷诺磁流体力学控制数值模拟方法的基础上, 基于感应电流积分计算磁矢量势, 考虑截断因子对计算域的缩减, 提出了一种考虑感应磁场修正的低磁雷诺数磁流体力学计算方法, 并加以验证. 结合RAM-C钝锥体试验飞行状态数值模拟, 分析了“忽略感应磁场”造成的计算偏差, 探讨了“低磁雷诺数假设”在高超声速领域的使用原则. 研究表明: 1)本文建立的修正计算方法, 突破低磁雷诺数条件的限制, 拓展了低磁雷诺数方法在高超声速领域的适用性和应用范围, 数值模拟结果可信度高, 同时通过积分区域限制等方法使计算效率得到了较大的提升; 2)高超声速流动过程中感应磁场的影响, 在宏观上表现为对外加磁场的削弱和扭曲, 一定程度上降低了磁控效果; 本文计算条件下, “Rem < 0.1”的低磁雷诺数条件可能过于保守, 建议取为Rem < 1.0, 同时其特征电导率和特征尺度应综合考虑实际的等离子体分布.
    Aming at the applicability of low magnetic Reynolds number method, in this paper we analyze the differences in the application of low magnetic Reynolds number condition and the limitation of full MHD method when it is applied to hypersonic flow. According to the low magnetic Reynolds number magneto-hydrodynamic control numerical simulation method, computing magnetic vector potential through integrating induced current, and considering the reduction of computation domain caused by truncation factors, we propose a low magnetic Reynolds number MHD computation method which is adjusted by the induced magnetic field, and the validation of this method is also presented. Through the numerical simulation of RAM-C blunt cone in flight test condition, we analyze the discrepancy caused by “neglecting induced magnetic field”, and also discuss the principle of the application of low magnetic Reynolds number assumption of hypersonic flow. The obtained results are as follows. (1) The adjusted computation method developed in this paper breaks through the limit of low magnetic Reynolds number, and expands the application range of low magnetic Reynolds number method to hypersonic flow, the numerical simulation result is reliable; Compared with direct integration of Biot-Savart law, the computation efficiency is considerably improved. (2) In the hypersonic flow, the influence of induced magnetic field is presented, thus weakening and distorting the applied magnetic field macroscopically, as a result weakening the effect of magnetic control to some extent. Under the condition of this paper, the low magnetic Reynolds number condition “Rem < 0.1” is probably too conservative, and it is better to adopt Rem < 1.0, and the characteristic conductivity and characteristic length should be chosen according to the actual plasma distribution.
      通信作者: 董维中, dongwz1966@163.com
    • 基金项目: 国家级-国家数值风洞工程(无)
      Corresponding author: Dong Wei-Zhong, dongwz1966@163.com
    [1]

    田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [2]

    潘勇 2007 博士学位论文(南京: 南京航空航天大学)

    PanY 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [3]

    张向洪 2014 博士学位论文 (南京: 南京航空航天大学)

    Zhang X H 2014 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    Palmer G 1993 J. Thermophys Heat Transfer 7 294Google Scholar

    [5]

    Barmin A A, Kulikovskiy A G 1996 J. Comput. Phys. 126 77Google Scholar

    [6]

    Nagata Y, Otsu H, Yamada K 2012 43rd AIAA Plasmadynamics and Lasers Conference NewOrleans, Louisiana, USA, June 25−8, 2012 p2734

    [7]

    Otsu H 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p5049

    [8]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference SanDiego, California, USA, June 24−27, 2013 p3000

    [9]

    Takahashi T, Shimosawa Y, Masuda K, Fujino T 2015 46th AIAA Plasma dynamics and Lasers Conference Dallas, Texas, USA, June 22−26, 2015 p3365

    [10]

    Bisek N J, Poggie J 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, USA, January 4−7, 2011 p897

    [11]

    Bisek N J, Boyd I D 2010 J. Spacecraft Rockets 47 816Google Scholar

    [12]

    Lee J, Huerta M, Zha G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, USA, January 4−7, 2010 p229

    [13]

    Cristofolini A, Borghi C A, Neretti G 2012 18th AIAA/3 AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24−28, 2012 p5804

    [14]

    Cristofolini A, Borghi C A, Neretti G 2012 43rd AIAA Plasmadynamics and Lasers Conference New Orleans, Louisiana, USA June 25−28, 2012 p2730

    [15]

    李开, 柳军, 刘伟强 2017 物理学报 66 084702Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702Google Scholar

    [16]

    李开, 刘伟强 2016 物理学报 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [17]

    姚霄, 刘伟强, 谭建国 2018 物理学报 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

    [18]

    何淼生, 杨文将, 郑小梅, 刘宇 2013 航空动力学报 28 365

    He M S, Yang W J, Zheng X M, Liu Y 2013 J. Aerosp. Power 28 365

    [19]

    陈刚, 张劲柏, 李椿萱 2010 北京航空航天大学学报 36 135

    Chen G, Zhang J B, Li C X 2010 J. BUAA 36 135

    [20]

    孙晓辉 2013 博士学位论文(南京: 南京理工大学)

    Sun X H 2008 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [21]

    Poggie J, Gaitonde D 2002 Phys. Fluids 14 1720Google Scholar

    [22]

    Fujino T, Kondo S, Ishikawa M 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA, June 25−28, 2007 p4248

    [23]

    Khan O U, Hoffmann K A, Dietiker J F 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA June 25−28, 2007 p4374

    [24]

    MacCormack R W 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 7−10, 2008 p1070

    [25]

    Kim M K 2009 Ph. D. Dissertation (Michigan: University of Michigan)

    [26]

    Bocharov A N 2010 High Temp. 48 483

    [27]

    Yoshino T, Fujino T, Ishikawa M 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA, June 25−28, 2007 p4249

    [28]

    李开, 刘伟强 2016 国防科技大学学报 38 25Google Scholar

    Li K, Liu W Q 2016 J. NUDT 38 25Google Scholar

    [29]

    郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第1−38页

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) pp1−38 (in Chinese)

    [30]

    MacCormack R 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 10−13, 2005 p0559

    [31]

    Khan O U, Hoffmann K A, Dietiker J F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 9−12, 2006 p966

    [32]

    黄富来, 黄护林 2009 航空学报 30 1834Google Scholar

    Huang F L, Huang H L 2009 Acta Aeronaut. Astronaut. Sin. 30 1834Google Scholar

    [33]

    Maccormack R W 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p4780

    [34]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030

    [35]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009

    [36]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 物理学报 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

  • 图 1  流场中电导率和环形感应电流分布[34] (a)电导率; (b)电流密度

    Fig. 1.  Distribution of electronic conductivity and annular electric current: (a) Conductivity; (b) current.

    图 2  不同位置的磁感应强度 (a) $r = 1.0\; {\rm{m}}$; (b) $x = 50.0 \;{\rm{m}}$

    Fig. 2.  Magnetic induction intensity in different locations: (a) $r = 1.0 \;{\rm{m}}$; (b) $x = 50.0 \;{\rm{m}}$

    图 3  外加磁场 (a)本文BXF; (b)文献BXF; (c)本文BYF; (d)文献BYF

    Fig. 3.  Externally applied magnetic field: (a) BXF of this paper; (b) BXF[33]; (c) BYF of this paper; (d) BYF[33].

    图 4  感应磁场 (a)本文BX; (b)文献BX; (c)本文BY; (d)文献BY

    Fig. 4.  Induced magnetic field: (a) BX of this paper; (b) BX[33]; (c) BY of this paper; (d) BY[33].

    图 5  不同方法计算的流场压力分布 (a)文献低磁雷诺数MHD方法; (b)文献全MHD方法; (c)本文低磁雷诺数MHD方法; (b)本文修正方法

    Fig. 5.  Distribution of pressure in the flow computed by different method: (a) Low Rem method[33]; (b) full MHD method[33]; (c) low Rem method of this paper; (d)improved method of this paper.

    图 6  采用电导率模型M6计算的流场电导率分布 (a)全场云图; (b)驻点线参数分布

    Fig. 6.  Distribution of electronic conductivity using M6: (a) Full contour map; (b) parameters along stagnation line.

    图 7  修正方法计算的钝锥RAM-C感应磁场 (a) ${B_x}$分量; (b) ${B_y}$分量

    Fig. 7.  Induced magnetic field of RAM-C using improved method: (a) Component ${B_x}$; (b) component ${B_y}$.

    图 8  钝锥RAM-C外加磁场和修正方法计算的全磁场分布 (a)全磁场${B_x}$分量; (b)全磁场${B_y}$分量; (c)外加磁场${B_x}$分量; (b)外加磁场${B_y}$分量

    Fig. 8.  Total magnetic field computed using improved method and externally applied magnetic field of RAM-C: (a) Total ${B_x}$; (b) total ${B_y}$; (c) externally ${B_x}$; (c) externally ${B_y}$.

    图 9  修正方法和一般低磁雷诺数MHD方法计算得到的热流分布比较

    Fig. 9.  Heat flux computed using Low Rem method or improvbed method.

    图 10  采用不同修正方法计算得到的热流和残差收敛曲线 (a)热流; (b)残差

    Fig. 10.  Heat flux and residual error computed using different modified method: (a) Heat flux; (b) residual error.

    表 1  钝锥RAM-C阻力系数

    Table 1.  Drag coefficient of RAM-C.

    计算方法或条件总阻力系数增大比例
    No Mag.0.292
    一般低$R{e_{\rm{m}}}$方法0.991239%
    修正方法0.980234%
    下载: 导出CSV
  • [1]

    田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [2]

    潘勇 2007 博士学位论文(南京: 南京航空航天大学)

    PanY 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [3]

    张向洪 2014 博士学位论文 (南京: 南京航空航天大学)

    Zhang X H 2014 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    Palmer G 1993 J. Thermophys Heat Transfer 7 294Google Scholar

    [5]

    Barmin A A, Kulikovskiy A G 1996 J. Comput. Phys. 126 77Google Scholar

    [6]

    Nagata Y, Otsu H, Yamada K 2012 43rd AIAA Plasmadynamics and Lasers Conference NewOrleans, Louisiana, USA, June 25−8, 2012 p2734

    [7]

    Otsu H 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p5049

    [8]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference SanDiego, California, USA, June 24−27, 2013 p3000

    [9]

    Takahashi T, Shimosawa Y, Masuda K, Fujino T 2015 46th AIAA Plasma dynamics and Lasers Conference Dallas, Texas, USA, June 22−26, 2015 p3365

    [10]

    Bisek N J, Poggie J 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, USA, January 4−7, 2011 p897

    [11]

    Bisek N J, Boyd I D 2010 J. Spacecraft Rockets 47 816Google Scholar

    [12]

    Lee J, Huerta M, Zha G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, USA, January 4−7, 2010 p229

    [13]

    Cristofolini A, Borghi C A, Neretti G 2012 18th AIAA/3 AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24−28, 2012 p5804

    [14]

    Cristofolini A, Borghi C A, Neretti G 2012 43rd AIAA Plasmadynamics and Lasers Conference New Orleans, Louisiana, USA June 25−28, 2012 p2730

    [15]

    李开, 柳军, 刘伟强 2017 物理学报 66 084702Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702Google Scholar

    [16]

    李开, 刘伟强 2016 物理学报 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [17]

    姚霄, 刘伟强, 谭建国 2018 物理学报 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

    [18]

    何淼生, 杨文将, 郑小梅, 刘宇 2013 航空动力学报 28 365

    He M S, Yang W J, Zheng X M, Liu Y 2013 J. Aerosp. Power 28 365

    [19]

    陈刚, 张劲柏, 李椿萱 2010 北京航空航天大学学报 36 135

    Chen G, Zhang J B, Li C X 2010 J. BUAA 36 135

    [20]

    孙晓辉 2013 博士学位论文(南京: 南京理工大学)

    Sun X H 2008 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [21]

    Poggie J, Gaitonde D 2002 Phys. Fluids 14 1720Google Scholar

    [22]

    Fujino T, Kondo S, Ishikawa M 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA, June 25−28, 2007 p4248

    [23]

    Khan O U, Hoffmann K A, Dietiker J F 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA June 25−28, 2007 p4374

    [24]

    MacCormack R W 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 7−10, 2008 p1070

    [25]

    Kim M K 2009 Ph. D. Dissertation (Michigan: University of Michigan)

    [26]

    Bocharov A N 2010 High Temp. 48 483

    [27]

    Yoshino T, Fujino T, Ishikawa M 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA, June 25−28, 2007 p4249

    [28]

    李开, 刘伟强 2016 国防科技大学学报 38 25Google Scholar

    Li K, Liu W Q 2016 J. NUDT 38 25Google Scholar

    [29]

    郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第1−38页

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) pp1−38 (in Chinese)

    [30]

    MacCormack R 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 10−13, 2005 p0559

    [31]

    Khan O U, Hoffmann K A, Dietiker J F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 9−12, 2006 p966

    [32]

    黄富来, 黄护林 2009 航空学报 30 1834Google Scholar

    Huang F L, Huang H L 2009 Acta Aeronaut. Astronaut. Sin. 30 1834Google Scholar

    [33]

    Maccormack R W 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p4780

    [34]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030

    [35]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009

    [36]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 物理学报 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

  • [1] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [2] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [3] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究. 物理学报, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [4] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [5] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均. 平行轨道加速器等离子体动力学特性研究. 物理学报, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [6] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究. 物理学报, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [7] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [8] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [9] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [10] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究. 物理学报, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [11] 杜宏亮, 何立明, 兰宇丹, 王峰. 约化场强对氮-氧混合气放电等离子体演化特性的影响. 物理学报, 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [12] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟. 物理学报, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [13] 兰宇丹, 何立明, 丁伟, 王峰. 不同初始温度下H2/O2混合物等离子体的演化. 物理学报, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [14] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [15] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [16] 欧阳建明, 邵福球, 林明东. 含氧等离子体中臭氧形成过程数值模拟. 物理学报, 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [17] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [18] 张 霆, 丁伯江. 原子过程对极向CXRS测量影响的数值模拟. 物理学报, 2006, 55(3): 1534-1538. doi: 10.7498/aps.55.1534
    [19] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [20] 王艳辉, 王德真. 介质阻挡均匀大气压辉光放电数值模拟研究. 物理学报, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
计量
  • 文章访问数:  5248
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-03-25
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回