搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面催化对高温非平衡流场磁控效果影响分析

罗仕超 吴里银 胡守超 龚红明 吕明磊 孔小平

引用本文:
Citation:

壁面催化对高温非平衡流场磁控效果影响分析

罗仕超, 吴里银, 胡守超, 龚红明, 吕明磊, 孔小平

Wall catalytic effects on magnetohydrodynamic control of high temperature non-equilibrium flow field

Luo Shi-Chao, Wu Li-Yin, Hu Shou-Chao, Gong Hong-Ming, Lv Ming-Lei, Kong Xiao-Ping
PDF
导出引用
  • 以轨道再入试验飞行器OREX为研究对象,采用热化学非平衡磁流体动力学模型对高超声速飞行器的表面热流进行数值模拟,分析了不同飞行工况下壁面催化条件对气动热环境影响规律,基础之上,研究了外加磁场条件对热化学非平衡流场影响机制。结果表明:再入过程中,表面热流随催化复合系数的增加呈单调递增分布,壁面催化条件显著影响MHD控制效果,总热流密度与壁面附近原子组分堆积量、扩散梯度及温度梯度密切相关。外加磁场作用下,壁面附近氧原子、氮原子组分堆积量减少;洛伦兹力导致激波脱体距离增大,组分扩散梯度、壁面温度梯度降低。磁控热防护系统“电磁冷却”能力从大到小依次为全催化、有限催化、非催化壁面。
    During the re-entry process of the vehicle into the atmosphere, the high-temperature environment, induced by the compression of the strong shock wave and viscous retardation, is created around the head of a vehicle. These generate a conductive plasma flow field, which provides a direct working environment for the application of magnetohydrodynaimic (MHD) control technology. Numerical simulations based on thermochemical non-equilibrium MHD model were adopted to analyze the surface heat flux of an orbital reentry experiment (OREX) vehicle. The influence of wall catalytic conditions on the aerothermal environment under different flight conditions was discussed. In addition, the control mechanism of an external magnetic field on high-temperature thermochemical non-equilibrium flow field is analyzed. Results demonstrate that the surface heat flux distributes monotonically increasing with the increase of catalytic recombination coefficient, and the surface heat flux rises and then drops with the decrease in flight altitude. Moreover, the wall catalytic properties significantly affect the efficiency of MHD control technology, and the total heat flux is closely related to the accumulation of atomic components, diffusion gradient and temperature gradient near the wall region. With an external magnetic field applied, the accumulation of oxygen atoms and nitrogen atoms near the wall can be decreased. Moreover, the Lorentz force can increase the shock standoff distance, and then decrease the component diffusion gradient and wall temperature gradient. Surface heat flux MHD control capabilities under three types of wall catalytic conditions are ranked from strong to weak as full catalytic, partially catalytic and non-catalytic.
  • [1]

    Luo S C, Zhang Z G, Liu J, Gong H M, Hu S C, Wu L Y, Chang Y, Zhuang Y, Li X, Huang C Y 2023 Chin. J. Theoret. Appl. Mech. 55 2694 (in Chinese) [罗仕超, 张志刚, 柳 军, 龚红明, 胡守超, 吴里银, 常 雨, 庄 宇, 李 贤, 黄成扬 2023 力学学报 55 2694]

    [2]

    Cui Z L, Zhao J, Yao J 2022 Chinese J Aeronaut. 35 56

    [3]

    Bonelli F, Pascazio G. Colonna, G 2021 Phys Rev Fluids 6, 033201

    [4]

    Davide N, Francesco B, Gianpiero C 2022 Acta Astronaut 201 247

    [5]

    Yu M H, Qiu Z Y, Takahashi Y 2023. Phys Fluids 35 056106

    [6]

    Zhou K, Peng J, Ou D B 2020 Sci. China: Tech. Sci. 50 1095 (in Chinese) [周凯, 彭俊, 欧东斌 2020 中国科学: 技术科学 50 1095]

    [7]

    Ding M S, Dong W Z, Gao T S 2018 Acta Aeronaut. Astronaut. Sin. 39 121588 (in Chinese) [丁明松, 董维中, 高铁锁 2018 航空学报 39 121588]

    [8]

    Miao W B, Cheng X L, Ai B C 2011 Acta Aerodyn. Sin. 29 476 (in Chinese)[苗文博, 程晓丽, 艾邦成 2011 空气动力学学报 29 476]

    [9]

    Miao W B, Cheng X L, Ai B C, Sheng Q 2013 J. Astronaut. 34 422 (in Chinese)[苗文博, 程晓丽, 艾邦成, 沈清 2013 宇航学报 34 442]

    [10]

    Mo F, Wang T Z, Gao Z X 2021 Physics of Gases 6 1 (in Chinese) [莫凡, 王锁柱, 高振勋 2021 气体物理6 1]

    [11]

    Liang H, Jing H, Meng S H 2021 J. Astronaut. 42 409 (in Chinese)[梁伟, 金华, 孟松鹤 2021 宇航学报, 42 409]

    [12]

    Luo K, Wang Q, Li J Y 2024 Chin. J. Theoret. Appl. Mech. 53 1515 (in Chinese)[罗凯, 汪球, 李逸翔 2021 力学学报 53 1515]

    [13]

    Peng S, Jin K, Zheng X 2022 AIAA J 60 6536

    [14]

    Chen G, Zhang J B, Li C X 2008 Chin. J. Theoret. Appl. Mech. 40 752 (in Chinese) [陈刚, 张劲柏, 李椿萱 2008 力学学报 40 752]

    [15]

    Ding M S, Jiang T, Liu Q Z, Dong W Z,Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009 (in Chinese) [丁明松,江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009]

    [16]

    Heather A M, Nikos N 2021 Phys Fluids 34 107114

    [17]

    Teng Z A, Zhou Z F, Zhang Z C 2024 Aerodynamic Research & Experiment 02 86 (in Chinese)[滕子昂, 周志峰, 张智超 2024 气动研究与试验 02 86]

    [18]

    Gupta R N, Yos J M, Thompson R, Lee K P 1990 NASA RP-1232

    [19]

    Shang J, Yan H 2020 Advances in Aerodynamics 2 39

    [20]

    Candler G V 2019 Annu Rev Fluid Mech 51 379

    [21]

    Zhang W, Zhang Z, Wang X 2022 Advances in Aerodynamics 4 38

    [22]

    Park C, Griffith W 1991 Phys. Today 44 98

    [23]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA/TP–2867

    [24]

    Jiang H, Che X K, Zhang T T 2023 Aerospace Technology 3 45 (in Chinese)[蒋浩, 车学科, 张天天 2023 空天技术 3 40]

    [25]

    Li P, Cheng J Q, Ding M S 2013 Acta Aeronaut. Astronaut. Sin. 42 726400 (in Chinese)[李鹏, 陈坚强, 丁明松 2013 航空学报 42 726400.]

    [26]

    MacLean M, Marineau E, Parker R, Dufrene A, Holden M, DesJardin P 2013 J Spacecraft Rockets 50 470

    [27]

    Mo F, Gao Z X, Jiang C W 2021 SCIENTIA SINICA Physica, Mechanica & Astronomica 51 104703(in Chinese)[莫凡, 高振勋, 蒋崇文 2021 中国科学: 物理学 力学 天文学 51 104703

    [28]

    Luo S C, Wu L Y, Chang Y 2023 Aerosp. Sci. Technol. 132 108041

    [29]

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李开 2017 博士学位论文 (长沙: 国防科技大学)]

    [30]

    Doihara R, Nishida M 2002 Shock Waves 11 331

    [31]

    Luo S C, Wu L Y, Chang Y 2022 Acta Phys. Sin. 71 214702 (in Chinese)[罗仕超, 吴里银, 常雨 2022 物理学报 71 214702.

    [32]

    Luo S C, Hu S C, Liu J 2024 SCIENTIA SINICA Physica, Mechanica & Astronomica 54 274711 (in Chinese)[罗仕超, 胡守超, 柳军 2024 中国科学:物理学 力学 天文学 54 274711

    [33]

    Fujino T, Shimosawa Y 2016 J. Spacecraft Rockets 53 1

    [34]

    Zhang Z C, Gao Z X, Jiang C W 2015 Journal of Beijing University of Aeronautics and Astronautics 41 594 (in Chinese)[张智超,高振勋,蒋崇文 2015 北京航空航天大学学报 41 594]

  • [1] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, doi: 10.7498/aps.71.20220941
    [2] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, doi: 10.7498/aps.70.20201610
    [3] 丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁. 基于电流积分计算磁矢量势修正的低磁雷诺数方法. 物理学报, doi: 10.7498/aps.69.20200091
    [4] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, doi: 10.7498/aps.69.20200630
    [5] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, doi: 10.7498/aps.68.20190865
    [6] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, doi: 10.7498/aps.68.20190173
    [7] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响. 物理学报, doi: 10.7498/aps.68.20181567
    [8] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎. 不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解. 物理学报, doi: 10.7498/aps.68.20190410
    [9] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究. 物理学报, doi: 10.7498/aps.68.20181747
    [10] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, doi: 10.7498/aps.68.20190378
    [11] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究. 物理学报, doi: 10.7498/aps.67.20181127
    [12] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, doi: 10.7498/aps.64.134702
    [13] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, doi: 10.7498/aps.63.125202
    [14] 薛创, 丁宁, 孙顺凯, 肖德龙, 张扬, 黄俊, 宁成, 束小建. 脉冲功率驱动器与Z箍缩负载耦合的全电路数值模拟. 物理学报, doi: 10.7498/aps.63.125207
    [15] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究. 物理学报, doi: 10.7498/aps.61.044205
    [16] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, doi: 10.7498/aps.60.085101
    [17] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, doi: 10.7498/aps.59.8701
    [18] 宋男男, 吴士平, 栾义坤, 康秀红, 李殿中. 卧式离心铸造过程数值模拟与水力学试验研究. 物理学报, doi: 10.7498/aps.58.112
    [19] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布. 物理学报, doi: 10.7498/aps.58.6633
    [20] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, doi: 10.7498/aps.57.5761
计量
  • 文章访问数:  103
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-05

/

返回文章
返回