-
以轨道再入试验飞行器OREX为研究对象,采用热化学非平衡磁流体动力学模型对高超声速飞行器的表面热流进行数值模拟,分析了不同飞行工况下壁面催化条件对气动热环境影响规律,基础之上,研究了外加磁场条件对热化学非平衡流场影响机制。结果表明:再入过程中,表面热流随催化复合系数的增加呈单调递增分布,壁面催化条件显著影响MHD控制效果,总热流密度与壁面附近原子组分堆积量、扩散梯度及温度梯度密切相关。外加磁场作用下,壁面附近氧原子、氮原子组分堆积量减少;洛伦兹力导致激波脱体距离增大,组分扩散梯度、壁面温度梯度降低。磁控热防护系统“电磁冷却”能力从大到小依次为全催化、有限催化、非催化壁面。During the re-entry process of the vehicle into the atmosphere, the high-temperature environment, induced by the compression of the strong shock wave and viscous retardation, is created around the head of a vehicle. These generate a conductive plasma flow field, which provides a direct working environment for the application of magnetohydrodynaimic (MHD) control technology. Numerical simulations based on thermochemical non-equilibrium MHD model were adopted to analyze the surface heat flux of an orbital reentry experiment (OREX) vehicle. The influence of wall catalytic conditions on the aerothermal environment under different flight conditions was discussed. In addition, the control mechanism of an external magnetic field on high-temperature thermochemical non-equilibrium flow field is analyzed. Results demonstrate that the surface heat flux distributes monotonically increasing with the increase of catalytic recombination coefficient, and the surface heat flux rises and then drops with the decrease in flight altitude. Moreover, the wall catalytic properties significantly affect the efficiency of MHD control technology, and the total heat flux is closely related to the accumulation of atomic components, diffusion gradient and temperature gradient near the wall region. With an external magnetic field applied, the accumulation of oxygen atoms and nitrogen atoms near the wall can be decreased. Moreover, the Lorentz force can increase the shock standoff distance, and then decrease the component diffusion gradient and wall temperature gradient. Surface heat flux MHD control capabilities under three types of wall catalytic conditions are ranked from strong to weak as full catalytic, partially catalytic and non-catalytic.
-
Keywords:
- Thermochemical non-equilibrium /
- Magnetohydrodynamic /
- Catalytic effect /
- Numerical simulation
-
[1] Luo S C, Zhang Z G, Liu J, Gong H M, Hu S C, Wu L Y, Chang Y, Zhuang Y, Li X, Huang C Y 2023 Chin. J. Theoret. Appl. Mech. 55 2694 (in Chinese) [罗仕超, 张志刚, 柳 军, 龚红明, 胡守超, 吴里银, 常 雨, 庄 宇, 李 贤, 黄成扬 2023 力学学报 55 2694]
[2] Cui Z L, Zhao J, Yao J 2022 Chinese J Aeronaut. 35 56
[3] Bonelli F, Pascazio G. Colonna, G 2021 Phys Rev Fluids 6, 033201
[4] Davide N, Francesco B, Gianpiero C 2022 Acta Astronaut 201 247
[5] Yu M H, Qiu Z Y, Takahashi Y 2023. Phys Fluids 35 056106
[6] Zhou K, Peng J, Ou D B 2020 Sci. China: Tech. Sci. 50 1095 (in Chinese) [周凯, 彭俊, 欧东斌 2020 中国科学: 技术科学 50 1095]
[7] Ding M S, Dong W Z, Gao T S 2018 Acta Aeronaut. Astronaut. Sin. 39 121588 (in Chinese) [丁明松, 董维中, 高铁锁 2018 航空学报 39 121588]
[8] Miao W B, Cheng X L, Ai B C 2011 Acta Aerodyn. Sin. 29 476 (in Chinese)[苗文博, 程晓丽, 艾邦成 2011 空气动力学学报 29 476]
[9] Miao W B, Cheng X L, Ai B C, Sheng Q 2013 J. Astronaut. 34 422 (in Chinese)[苗文博, 程晓丽, 艾邦成, 沈清 2013 宇航学报 34 442]
[10] Mo F, Wang T Z, Gao Z X 2021 Physics of Gases 6 1 (in Chinese) [莫凡, 王锁柱, 高振勋 2021 气体物理6 1]
[11] Liang H, Jing H, Meng S H 2021 J. Astronaut. 42 409 (in Chinese)[梁伟, 金华, 孟松鹤 2021 宇航学报, 42 409]
[12] Luo K, Wang Q, Li J Y 2024 Chin. J. Theoret. Appl. Mech. 53 1515 (in Chinese)[罗凯, 汪球, 李逸翔 2021 力学学报 53 1515]
[13] Peng S, Jin K, Zheng X 2022 AIAA J 60 6536
[14] Chen G, Zhang J B, Li C X 2008 Chin. J. Theoret. Appl. Mech. 40 752 (in Chinese) [陈刚, 张劲柏, 李椿萱 2008 力学学报 40 752]
[15] Ding M S, Jiang T, Liu Q Z, Dong W Z,Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009 (in Chinese) [丁明松,江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009]
[16] Heather A M, Nikos N 2021 Phys Fluids 34 107114
[17] Teng Z A, Zhou Z F, Zhang Z C 2024 Aerodynamic Research & Experiment 02 86 (in Chinese)[滕子昂, 周志峰, 张智超 2024 气动研究与试验 02 86]
[18] Gupta R N, Yos J M, Thompson R, Lee K P 1990 NASA RP-1232
[19] Shang J, Yan H 2020 Advances in Aerodynamics 2 39
[20] Candler G V 2019 Annu Rev Fluid Mech 51 379
[21] Zhang W, Zhang Z, Wang X 2022 Advances in Aerodynamics 4 38
[22] Park C, Griffith W 1991 Phys. Today 44 98
[23] Gnoffo P A, Gupta R N, Shinn J L 1989 NASA/TP–2867
[24] Jiang H, Che X K, Zhang T T 2023 Aerospace Technology 3 45 (in Chinese)[蒋浩, 车学科, 张天天 2023 空天技术 3 40]
[25] Li P, Cheng J Q, Ding M S 2013 Acta Aeronaut. Astronaut. Sin. 42 726400 (in Chinese)[李鹏, 陈坚强, 丁明松 2013 航空学报 42 726400.]
[26] MacLean M, Marineau E, Parker R, Dufrene A, Holden M, DesJardin P 2013 J Spacecraft Rockets 50 470
[27] Mo F, Gao Z X, Jiang C W 2021 SCIENTIA SINICA Physica, Mechanica & Astronomica 51 104703(in Chinese)[莫凡, 高振勋, 蒋崇文 2021 中国科学: 物理学 力学 天文学 51 104703
[28] Luo S C, Wu L Y, Chang Y 2023 Aerosp. Sci. Technol. 132 108041
[29] Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李开 2017 博士学位论文 (长沙: 国防科技大学)]
[30] Doihara R, Nishida M 2002 Shock Waves 11 331
[31] Luo S C, Wu L Y, Chang Y 2022 Acta Phys. Sin. 71 214702 (in Chinese)[罗仕超, 吴里银, 常雨 2022 物理学报 71 214702.
[32] Luo S C, Hu S C, Liu J 2024 SCIENTIA SINICA Physica, Mechanica & Astronomica 54 274711 (in Chinese)[罗仕超, 胡守超, 柳军 2024 中国科学:物理学 力学 天文学 54 274711
[33] Fujino T, Shimosawa Y 2016 J. Spacecraft Rockets 53 1
[34] Zhang Z C, Gao Z X, Jiang C W 2015 Journal of Beijing University of Aeronautics and Astronautics 41 594 (in Chinese)[张智超,高振勋,蒋崇文 2015 北京航空航天大学学报 41 594]
计量
- 文章访问数: 103
- PDF下载量: 3
- 被引次数: 0