-
本文通过辐照实验和TCAD仿真,研究了质子累积辐照导致四晶体管钳位光电二极管(4T PPD)CMOS图像传感器的饱和输出变化机理。实验采用的质子能量为12 MeV和60 MeV,最高注量为2×1012 p/cm²。实验结果表明:12 MeV和60 MeV质子最高注量辐照后分别导致转换增益增大8.2%和7.3%,满阱容量分别减小7.3%和3.8%。饱和输出在12 MeV质子辐照下变化趋势不显著,在60 MeV质子辐照下增大3%。在TCAD仿真中,建立了单个三维4T PPD像元模型,开展了质子累积辐照效应仿真来分析损伤机理。仿真结果表明像元饱和输出的变化由满阱容量、复位晶体管的物理特性和浮置扩散区的电容决定,但它们具有不同的影响。具体而言,满阱容量的降低导致饱和输出减小,而复位晶体管的辐照效应导致饱和输出增大。辐照导致浮置扩散区的电容减小,从而使转换增益增大,进而饱和输出增大。上述工作较为全面的揭示和分析了辐照后饱和输出的变化机理,研究成果对CMOS图像传感器的辐射损伤分析具有一定的指导意义。Complementary metal oxide semiconductor (CMOS) image sensors have become increasingly widely used in the field of radiation environments due to their numerous advantages, and their radiation effects have also attracted much attention. Some experimental studies have shown a decrease in the saturation output of CMOS image sensors after irradiation, while others have reported an increase. This article conducts further in-depth research on the inconsistent result based on proton irradiation experiments and TCAD simulations, analyzing the degradation mechanism in full well capacity (FWC), conversion factor (CVF), and saturation output of the 4T pinned photodiode (PPD) CMOS image sensors due to proton cumulative radiation effects. In experiments, the sensors are irradiated by 12 MeV and 60 MeV protons with a fluence up to 2×1012 p/cm2. The sensors are unbiased during irradiation. The experimental results show that proton irradiation at 12 MeV and 60 MeV results in an increase of 8.2% and 7.3% in conversion gain, respectively, and a decrease of 7.3% and 3.8% in full well capacity, respectively. The saturation output shows no significant change trend under 12 MeV proton irradiation, but increases by 3% under 60 MeV proton irradiation. In TCAD simulation, a three-dimensional 4T PPD pixel model is constructed. A simulation method that combines the Traps and Gamma Radiation model within TCAD and minority carrier lifetime mathematical model is employed to conduct global and local cumulative proton irradiation simulations for analyzing degradation mechanisms. It is proposed that the degradation of saturation output at the pixel level is determined by the FWC of PPD, the physical characteristics of the reset transistor and the capacitance of floating diffusion, but they have opposite effects. Proton irradiation leads to the accumulation of oxide-trapped positive charges in the shallow trench isolation on both sides of PPD, resulting in the formation of leakage current path in silicon, thereby reducing the full well capacity. A decrease in FWC leads to a decrease in saturation output. While, the radiation effect of the reset transistor causes the FD potential to increase during the FD reset phase, further leading to an increase in saturation output. Irradiation causes a decrease in the capacitance of the floating diffusion, resulting in an increase in conversion factor and consequently increasing the saturation output. The difference in radiation sensitivity among the three influence factors at the pixel level may result in a decrease or increase in saturation output with proton fluence. The above work comprehensively reveals and analyzes the mechanism of degradation in FWC, CVF and saturation output after irradiation, and the research results have certain guiding significance for the radiation damage analysis of CMOS image sensors.
-
Keywords:
- CMOS image sensor /
- total ionizing dose (TID) /
- saturation output /
- full well capacity /
- conversion factor
-
[1] Wang Z J, Liu J, Xue Y Y, He B P, Yao Z B, Sheng J K 2017Semiconductor Optoelectronics 38 1(in Chinese) [王祖军, 刘静, 薛院院, 何宝平, 姚志斌, 盛江坤2017半导体光电38 1]
[2] Goiffon V, Estribeau M, Magnan P 2009IEEE Trans. Electron Devices 56 2594
[3] Virmontois C, Goiffon V, Magnan P, Girard S, Inguimbert C, Petit S, Rolland G, Saint-Pe O 2010IEEE Trans. Nucl. Sci. 57 3101
[4] Le Roch A, Virmontois C, Paillet P, Belloir J M, Rizzolo S, Marcelot O, Dewitte H, Van Uffelen M, Casellas L M, Magnan P, Goiffon V 2020IEEE Trans. Nucl. Sci. 67 1241
[5] Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014Acta Phys. Sin. 63 056102(in Chinese) [汪波,李豫东,郭旗,刘昌举,文林,玛丽娅,孙静,王海娇,丛忠超,马武英2014物理学报63 056102]
[6] Wang F, Li Y D, Guo Q, Wang B, Zhang X Y, Wen L, He C F 2016Acta Phys. Sin. 65 024212(in Chinese) [王帆,李豫东,郭旗,汪波,张兴尧,文林,何承发2016物理学报65 024212]
[7] Rizzolo S, Goiffon V, Estribeau M, Paillet P, Marcandella C, Durnez C, Magnan P 2018IEEE Trans. Nucl. Sci. 6584
[8] Wang B, Li Y D, Guo Q, Wen L, Sun J, Wang F, Zhang X Y, Ma L Y 2015High Power Laser and Particle Beams 27 210(in Chinese) [汪波, 李豫东, 郭旗, 文林, 孙静, 王帆, 张兴尧, 玛丽娅2015强激光与粒子束27 210]
[9] Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ren D Y, Zeng J Z, Ma L Y 2015Acta Phys. Sin. 64 193(in Chinese) [汪波, 李豫东, 郭旗, 刘昌举, 文林, 任迪远, 曾骏哲, 玛丽娅2015物理学报64 193]
[10] Fu J, Feng J, Li Y D, Guo Q, Wen L, Zhou D, Zhang X, Cai Y L, Liu B K 2021Radiation Physics and Chemistry 182 109384
[11] Wang Z, Xue Y, Guo X, Bian J, Yao Z, He B, Ma W, Sheng J, Dong G, Liu Y 2018Nucl. Instrum. Methods A 895 35
[12] Goiffon V, Estribeau M, Marcelot O, Cervantes P, Magnan P, Gaillardin M, Virmontois C, Martin-Gonthier P, Molina R, Corbiere F, Girard S, Paillet P, Marcandella C 2012IEEE Trans. Nucl. Sci. 59 2878
[13] Wang Z, Ma W, Huang S, Yao Z, Liu M, He B, Liu J, Sheng J, Xue Y 2016AIP Advances 6 035205
[14] Meng X, Stefanov K D, Holland A D 2020IEEE Trans. Nucl. Sci. 67 1107
[15] Virmontois C, Durnez C, Estribeau M, Cervantes P, Avon B, Goiffon V, Magnan P, Materne A, Bardoux A 2017IEEE Trans. Nucl. Sci. 64 38
[16] Lai S, Wang Z, Huang G, Xue Y, Nie X, Tang N, Yan S, Wang X 2023Nucl. Instrum. Methods A 1050 168069
[17] Yang Xie, Huo Yonggang, Wang Zujun, Shang Aiguo, Xue Yuanyuan, Jia Tongxuan 2022Acta Optica. Sin. 42 0723002(in Chinese) [杨勰, 霍勇刚, 王祖军, 尚爱国, 薛院院, 贾同轩2022光学学报42 0723002]
[18] Peng Z, Fu Y, Wei Y, Zuo Y, Niu S, Zhu J, Guo Y, Liu F, Li P, He C, Li Y 2024AIP Advances 14 015211
[19] Wang Z ming, Chen W, Qiu M tong, Yan Y hua, Zhang H, Wang M wen, Wang B chuan, Yang Y, Wang D, Liu W long, Wang M cheng, Lv W, Zhao M tong, Zhao C, Wei C yang, Yao H juan, Zheng S xin, Wang X wu, Guan X ling, Xing Q zi, Cheng C, Du T bing, Zhang H yi, Lei Y, Wang D, Du C tong, Ma P fei, Liu X yu, Li Y, Ye W bo, Yu X dong 2022Nucl. Instrum. Methods A 1027 166283
[20] Khan U, Sarkar M 2018IEEE Trans. Electron Devices 65 2892
[21] Wang Z, Xue Y, Wang Z, Chen W, Yin L, Wang X, Nie X, Lai S, Huang G, Wang M, Ding L, He B, Ma W, Gou S 2024Nucl. Instrum. Methods A 1058 168784
[22] Petrosyants K O, Kozhukhov M V 2016IEEE Trans. Nucl. Sci. 63 2016
[23] C. Poivey and G. Hopkinson 2009ESA—EPFL Space Center Workshop June, 2009 p9
[24] Wang C, Bai X, Chen W, Yang S, Liu Y, Jin X, Ding L 2015Nucl. Instrum. Methods A 796 108
[25] Gregory B L, Gwyn C W 1970IEEE Trans. Nucl. Sci. 17 325
[26] C. J. Marshall and P. W. Marshall 1999IEEE Nucl. Space Radiat. Effects Conf. Short Course Notes, July,1999 p50
[27] Lee M S, Lee H C 2013IEEE Trans. Nucl. Sci. 60 3084
[28] Johnston A H, Swimm R T, Allen G R, Miyahira T F 2009IEEE Trans. Nucl. Sci. 56 1941
[29] Hu Z, Liu Z, Shao H, Zhang Z, Ning B, Chen M, Bi D, Zou S 2011IEEE Trans. Nucl. Sci. 58 1332
计量
- 文章访问数: 83
- PDF下载量: 1
- 被引次数: 0