搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子累积辐照效应对CMOS图像传感器饱和输出的影响研究

彭治钢 白豪杰 刘方 李洋 何欢 李培 贺朝会 李永宏

引用本文:
Citation:

质子累积辐照效应对CMOS图像传感器饱和输出的影响研究

彭治钢, 白豪杰, 刘方, 李洋, 何欢, 李培, 贺朝会, 李永宏

Proton Cumulative Radiation Effects on Saturation Output in CMOS Image Sensors

Peng Zhi-Gang, Bai Hao-Jie, Liu Fang, Li Yang, He Huan, Li Pei, He Chao-Hui, Li Yong-Hong
PDF
导出引用
  • 本文通过辐照实验和TCAD仿真,研究了质子累积辐照导致四晶体管钳位光电二极管(4T PPD)CMOS图像传感器的饱和输出变化机理。实验采用的质子能量为12 MeV和60 MeV,最高注量为2×1012 p/cm²。实验结果表明:12 MeV和60 MeV质子最高注量辐照后分别导致转换增益增大8.2%和7.3%,满阱容量分别减小7.3%和3.8%。饱和输出在12 MeV质子辐照下变化趋势不显著,在60 MeV质子辐照下增大3%。在TCAD仿真中,建立了单个三维4T PPD像元模型,开展了质子累积辐照效应仿真来分析损伤机理。仿真结果表明像元饱和输出的变化由满阱容量、复位晶体管的物理特性和浮置扩散区的电容决定,但它们具有不同的影响。具体而言,满阱容量的降低导致饱和输出减小,而复位晶体管的辐照效应导致饱和输出增大。辐照导致浮置扩散区的电容减小,从而使转换增益增大,进而饱和输出增大。上述工作较为全面的揭示和分析了辐照后饱和输出的变化机理,研究成果对CMOS图像传感器的辐射损伤分析具有一定的指导意义。
    Complementary metal oxide semiconductor (CMOS) image sensors have become increasingly widely used in the field of radiation environments due to their numerous advantages, and their radiation effects have also attracted much attention. Some experimental studies have shown a decrease in the saturation output of CMOS image sensors after irradiation, while others have reported an increase. This article conducts further in-depth research on the inconsistent result based on proton irradiation experiments and TCAD simulations, analyzing the degradation mechanism in full well capacity (FWC), conversion factor (CVF), and saturation output of the 4T pinned photodiode (PPD) CMOS image sensors due to proton cumulative radiation effects. In experiments, the sensors are irradiated by 12 MeV and 60 MeV protons with a fluence up to 2×1012 p/cm2. The sensors are unbiased during irradiation. The experimental results show that proton irradiation at 12 MeV and 60 MeV results in an increase of 8.2% and 7.3% in conversion gain, respectively, and a decrease of 7.3% and 3.8% in full well capacity, respectively. The saturation output shows no significant change trend under 12 MeV proton irradiation, but increases by 3% under 60 MeV proton irradiation. In TCAD simulation, a three-dimensional 4T PPD pixel model is constructed. A simulation method that combines the Traps and Gamma Radiation model within TCAD and minority carrier lifetime mathematical model is employed to conduct global and local cumulative proton irradiation simulations for analyzing degradation mechanisms. It is proposed that the degradation of saturation output at the pixel level is determined by the FWC of PPD, the physical characteristics of the reset transistor and the capacitance of floating diffusion, but they have opposite effects. Proton irradiation leads to the accumulation of oxide-trapped positive charges in the shallow trench isolation on both sides of PPD, resulting in the formation of leakage current path in silicon, thereby reducing the full well capacity. A decrease in FWC leads to a decrease in saturation output. While, the radiation effect of the reset transistor causes the FD potential to increase during the FD reset phase, further leading to an increase in saturation output. Irradiation causes a decrease in the capacitance of the floating diffusion, resulting in an increase in conversion factor and consequently increasing the saturation output. The difference in radiation sensitivity among the three influence factors at the pixel level may result in a decrease or increase in saturation output with proton fluence. The above work comprehensively reveals and analyzes the mechanism of degradation in FWC, CVF and saturation output after irradiation, and the research results have certain guiding significance for the radiation damage analysis of CMOS image sensors.
  • [1]

    Wang Z J, Liu J, Xue Y Y, He B P, Yao Z B, Sheng J K 2017Semiconductor Optoelectronics 38 1(in Chinese) [王祖军, 刘静, 薛院院, 何宝平, 姚志斌, 盛江坤2017半导体光电38 1]

    [2]

    Goiffon V, Estribeau M, Magnan P 2009IEEE Trans. Electron Devices 56 2594

    [3]

    Virmontois C, Goiffon V, Magnan P, Girard S, Inguimbert C, Petit S, Rolland G, Saint-Pe O 2010IEEE Trans. Nucl. Sci. 57 3101

    [4]

    Le Roch A, Virmontois C, Paillet P, Belloir J M, Rizzolo S, Marcelot O, Dewitte H, Van Uffelen M, Casellas L M, Magnan P, Goiffon V 2020IEEE Trans. Nucl. Sci. 67 1241

    [5]

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014Acta Phys. Sin. 63 056102(in Chinese) [汪波,李豫东,郭旗,刘昌举,文林,玛丽娅,孙静,王海娇,丛忠超,马武英2014物理学报63 056102]

    [6]

    Wang F, Li Y D, Guo Q, Wang B, Zhang X Y, Wen L, He C F 2016Acta Phys. Sin. 65 024212(in Chinese) [王帆,李豫东,郭旗,汪波,张兴尧,文林,何承发2016物理学报65 024212]

    [7]

    Rizzolo S, Goiffon V, Estribeau M, Paillet P, Marcandella C, Durnez C, Magnan P 2018IEEE Trans. Nucl. Sci. 6584

    [8]

    Wang B, Li Y D, Guo Q, Wen L, Sun J, Wang F, Zhang X Y, Ma L Y 2015High Power Laser and Particle Beams 27 210(in Chinese) [汪波, 李豫东, 郭旗, 文林, 孙静, 王帆, 张兴尧, 玛丽娅2015强激光与粒子束27 210]

    [9]

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ren D Y, Zeng J Z, Ma L Y 2015Acta Phys. Sin. 64 193(in Chinese) [汪波, 李豫东, 郭旗, 刘昌举, 文林, 任迪远, 曾骏哲, 玛丽娅2015物理学报64 193]

    [10]

    Fu J, Feng J, Li Y D, Guo Q, Wen L, Zhou D, Zhang X, Cai Y L, Liu B K 2021Radiation Physics and Chemistry 182 109384

    [11]

    Wang Z, Xue Y, Guo X, Bian J, Yao Z, He B, Ma W, Sheng J, Dong G, Liu Y 2018Nucl. Instrum. Methods A 895 35

    [12]

    Goiffon V, Estribeau M, Marcelot O, Cervantes P, Magnan P, Gaillardin M, Virmontois C, Martin-Gonthier P, Molina R, Corbiere F, Girard S, Paillet P, Marcandella C 2012IEEE Trans. Nucl. Sci. 59 2878

    [13]

    Wang Z, Ma W, Huang S, Yao Z, Liu M, He B, Liu J, Sheng J, Xue Y 2016AIP Advances 6 035205

    [14]

    Meng X, Stefanov K D, Holland A D 2020IEEE Trans. Nucl. Sci. 67 1107

    [15]

    Virmontois C, Durnez C, Estribeau M, Cervantes P, Avon B, Goiffon V, Magnan P, Materne A, Bardoux A 2017IEEE Trans. Nucl. Sci. 64 38

    [16]

    Lai S, Wang Z, Huang G, Xue Y, Nie X, Tang N, Yan S, Wang X 2023Nucl. Instrum. Methods A 1050 168069

    [17]

    Yang Xie, Huo Yonggang, Wang Zujun, Shang Aiguo, Xue Yuanyuan, Jia Tongxuan 2022Acta Optica. Sin. 42 0723002(in Chinese) [杨勰, 霍勇刚, 王祖军, 尚爱国, 薛院院, 贾同轩2022光学学报42 0723002]

    [18]

    Peng Z, Fu Y, Wei Y, Zuo Y, Niu S, Zhu J, Guo Y, Liu F, Li P, He C, Li Y 2024AIP Advances 14 015211

    [19]

    Wang Z ming, Chen W, Qiu M tong, Yan Y hua, Zhang H, Wang M wen, Wang B chuan, Yang Y, Wang D, Liu W long, Wang M cheng, Lv W, Zhao M tong, Zhao C, Wei C yang, Yao H juan, Zheng S xin, Wang X wu, Guan X ling, Xing Q zi, Cheng C, Du T bing, Zhang H yi, Lei Y, Wang D, Du C tong, Ma P fei, Liu X yu, Li Y, Ye W bo, Yu X dong 2022Nucl. Instrum. Methods A 1027 166283

    [20]

    Khan U, Sarkar M 2018IEEE Trans. Electron Devices 65 2892

    [21]

    Wang Z, Xue Y, Wang Z, Chen W, Yin L, Wang X, Nie X, Lai S, Huang G, Wang M, Ding L, He B, Ma W, Gou S 2024Nucl. Instrum. Methods A 1058 168784

    [22]

    Petrosyants K O, Kozhukhov M V 2016IEEE Trans. Nucl. Sci. 63 2016

    [23]

    C. Poivey and G. Hopkinson 2009ESA—EPFL Space Center Workshop June, 2009 p9

    [24]

    Wang C, Bai X, Chen W, Yang S, Liu Y, Jin X, Ding L 2015Nucl. Instrum. Methods A 796 108

    [25]

    Gregory B L, Gwyn C W 1970IEEE Trans. Nucl. Sci. 17 325

    [26]

    C. J. Marshall and P. W. Marshall 1999IEEE Nucl. Space Radiat. Effects Conf. Short Course Notes, July,1999 p50

    [27]

    Lee M S, Lee H C 2013IEEE Trans. Nucl. Sci. 60 3084

    [28]

    Johnston A H, Swimm R T, Allen G R, Miyahira T F 2009IEEE Trans. Nucl. Sci. 56 1941

    [29]

    Hu Z, Liu Z, Shao H, Zhang Z, Ning B, Chen M, Bi D, Zou S 2011IEEE Trans. Nucl. Sci. 58 1332

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, doi: 10.7498/aps.73.20231829
    [2] 张书豪, 袁章亦安, 乔明, 张波. 超薄屏蔽层300 V SOI LDMOS抗电离辐射总剂量仿真研究. 物理学报, doi: 10.7498/aps.71.20220041
    [3] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, doi: 10.7498/aps.71.20211795
    [4] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, doi: 10.7498/aps.71.20211838
    [5] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, doi: 10.7498/aps.70.20211795
    [6] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, doi: 10.7498/aps.70.20202028
    [7] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, doi: 10.7498/aps.70.20201835
    [8] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, doi: 10.7498/aps.67.20180829
    [9] 王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发. 基于4晶体管像素结构的互补金属氧化物半导体图像传感器总剂量辐射效应研究. 物理学报, doi: 10.7498/aps.65.024212
    [10] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, doi: 10.7498/aps.63.226101
    [11] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应. 物理学报, doi: 10.7498/aps.62.176106
    [12] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应. 物理学报, doi: 10.7498/aps.62.036105
    [13] 商怀超, 刘红侠, 卓青青. 低剂量率60Co γ 射线辐照下SOI MOS器件的退化机理. 物理学报, doi: 10.7498/aps.61.246101
    [14] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响. 物理学报, doi: 10.7498/aps.61.050702
    [15] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究. 物理学报, doi: 10.7498/aps.61.106103
    [16] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, doi: 10.7498/aps.60.116103
    [17] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, doi: 10.7498/aps.60.096104
    [18] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, doi: 10.7498/aps.59.1970
    [19] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, doi: 10.7498/aps.53.194
    [20] 郭红霞, 陈雨生, 张义门, 周辉, 龚建成, 韩福斌, 关颖, 吴国荣. 稳态、瞬态X射线辐照引起的互补性金属-氧化物-半导体器件剂量增强效应研究. 物理学报, doi: 10.7498/aps.50.2279
计量
  • 文章访问数:  83
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-10

/

返回文章
返回