搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子累积辐照效应对CMOS图像传感器饱和输出的影响

彭治钢 白豪杰 刘方 李洋 何欢 李培 贺朝会 李永宏

引用本文:
Citation:

质子累积辐照效应对CMOS图像传感器饱和输出的影响

彭治钢, 白豪杰, 刘方, 李洋, 何欢, 李培, 贺朝会, 李永宏

Effect of proton cumulative radiation on saturation output in CMOS image sensors

Peng Zhi-Gang, Bai Hao-Jie, Liu Fang, Li Yang, He Huan, Li Pei, He Chao-Hui, Li Yong-Hong
PDF
HTML
导出引用
  • 本文通过辐照实验和TCAD仿真, 研究了质子累积辐照导致四晶体管钳位光电二极管(4T PPD)CMOS图像传感器的饱和输出变化机理. 实验采用的质子能量为12 MeV和60 MeV, 最高质子注量为2×1012 cm–2. 实验结果表明: 12 MeV和60 MeV质子最高注量辐照后分别导致转换增益增大8.2%和7.3%, 满阱容量分别减小7.3%和3.8%. 饱和输出在12 MeV质子辐照下变化趋势不显著, 在60 MeV质子辐照下增大3%. 在TCAD仿真中, 建立了单个三维4T PPD像元模型, 开展了质子累积辐照效应仿真来分析损伤机理. 仿真结果表明像元饱和输出的变化由满阱容量、复位晶体管的物理特性和浮置扩散区的电容决定, 但它们具有不同的影响. 具体而言, 满阱容量的降低导致饱和输出减小, 而复位晶体管的辐照效应导致饱和输出增大. 辐照导致浮置扩散区的电容减小, 从而使转换增益增大, 进而饱和输出增大. 上述工作较为全面地揭示和分析了辐照后饱和输出的变化机理, 研究成果对CMOS图像传感器的辐射损伤分析具有一定的指导意义.
    Complementary metal oxide semiconductor (CMOS) image sensors have been increasingly widely used in the field of radiation environments due to their numerous advantages, and their radiation effects have also attracted much attention. Some experimental studies have shown that the saturation output of CMOS image sensors decreases after irradiation, while others have reported that it increases. In this work, the further in-depth research on the inconsistent results is conducted based on the experiments on proton irradiation and TCAD simulations, and the degradation mechanism in full well capacity (FWC), conversion factor (CVF), and saturation output of the 4T pinned photodiode (PPD) CMOS image sensors due to proton cumulative radiation effects are also analyzed. In experiments, the sensors are irradiated by 12 MeV and 60 MeV protons with a fluence up to 2×1012 cm–2. The sensors are unbiased during irradiation. The experimental results show that proton irradiation at 12 MeV and 60 MeV result in an increase of 8.2% and 7.3% in conversion gain, respectively, and a decrease of 7.3% and 3.8% in full well capacity, respectively. The saturation output shows no significant change trend under 12 MeV proton irradiation, but increases by 3% under 60 MeV proton irradiation. In the TCAD simulation, a three-dimensional 4T PPD pixel model is constructed. A simulation method that combines the trap and gamma radiation model in TCAD with the mathematical model of minority carrier lifetime is used to simulate global and local cumulative proton irradiation in order to analyze the degradation mechanism. It is proposed that the degradation of saturation output at the pixel level is determined by the FWC of PPD, the physical characteristics of the reset transistor and the capacitance of floating diffusion, but they have opposite effects. Proton irradiation leads to the accumulation of oxide-trapped positive charges in the shallow trench isolation on both sides of PPD, resulting in the formation of leakage current path in silicon, thereby reducing the full well capacity. A decrease in FWC leads to a decrease in saturation output. While, the radiation effect of the reset transistor causes the FD potential to increase during the FD reset phase, further leading to an increase in saturation output. The irradiation causes the capacitance of the floating diffusion to decrease, resulting in an increase in conversion factor and consequently increasing the saturation output. The difference in radiation sensitivity among the three influence factors at the pixel level may result in a decrease or increase in saturation output with proton fluence increasing. The above work comprehensively reveals and analyzes the mechanisms of degradation in FWC, CVF and saturation output after irradiation, and the research results have certain guiding significance for analyzing the radiation damage to CMOS image sensors.
  • 图 1  (a) CIS芯片及图像采集卡; (b) 测试系统的程控暗箱; (c) 质子辐照实验示意图

    Fig. 1.  (a) CIS and image acquisition card; (b) the dark box of test system; (c) schematic diagram of CIS proton irradiation experiment setup.

    图 2  系统增益随质子注量变化

    Fig. 2.  Overall system gain versus the proton fluence.

    图 3  (a) 平均输出信号; (b) 满阱容量随质子注量变化

    Fig. 3.  (a) Mean signal level; (b) full well capacity versus proton fluence.

    图 4  平均饱和输出随质子注量变化

    Fig. 4.  Mean saturation outputs versus the proton fluence.

    图 5  TCAD中建立的4T PPD像元模型 (a) 三维模型, STI和PMD略去以便于展示; (b) 沿(a)图X = 1.2 μm的横截面

    Fig. 5.  The 4T PPD CIS pixel model built in TCAD: (a) 3D model, STI, and PMD removed for visualization; (b) 2D cross section taken along the X = 1.2 μm surface in (a).

    图 6  仿真时序及FD电势输出

    Fig. 6.  Simulation driving timings and the potential output of FD.

    图 7  4T PPD像元输出电压随光照强度变化

    Fig. 7.  Output variation of the 4T PPD CIS model with light intensity.

    图 8  全局质子辐照前后氧化物中陷阱正电荷分布 (a) 辐照前; (b) 质子注量1.0×1012 cm–2

    Fig. 8.  Distribution of trapped positive charges in the oxide: (a) Before irradiation; (b) proton fluence of 1.0×1012 cm–2.

    图 9  12 MeV全局质子辐照 (a) PPD内电子数量; (b) 满阱容量

    Fig. 9.  Global irradiation simulation by 12 MeV protons: (a) Total electron count within the PPD; (b) FWC.

    图 10  辐照前后PPD两侧氧化物陷阱正电荷和电子浓度分布 (a) 辐照前陷阱正电荷; (b) 辐照后陷阱正电荷; (c) 辐照前电子浓度; (d) 辐照后电子浓度

    Fig. 10.  Distribution of oxide-trapped positive charges in STI on both sides of the PPD during FD reset stage: (a) Positive charges before irradiation; (b) positive charges after irradiation; (c) electron concentration distribution before irradiation; (d) electron concentration distribution after irradiation.

    图 11  12 MeV全局质子辐照 (a) FD电势; (b) 饱和输出

    Fig. 11.  Global irradiation simulation by 12 MeV protons: (a) FD potential; (b) saturation output.

    图 12  质子局部辐照(Y > 2.1 μm) (a) 12 MeV质子辐照PPD内电子数量; (b) 满阱容量

    Fig. 12.  Local irradiation (Y > 2.1 μm): (a) Total electron count within the PPD irradiated by 12 MeV protons; (b) FWC.

    图 13  质子局部辐照(Y > 2.1 μm) (a) 12 MeV质子辐照FD电势; (b) 饱和输出

    Fig. 13.  Local irradiation (Y > 2.1 μm): (a) FD potential irradiated by 12 MeV protons; (b) saturation output.

    图 14  质子局部辐照(Y < 2.1 μm) (a) 12 MeV质子辐照PPD内电子数量; (b) 满阱容量

    Fig. 14.  Local irradiation (Y < 2.1 μm): (a) Total electron count within the PPD irradiated by 12 MeV protons; (b) FWC.

    图 15  质子局部辐照(Y < 2.1 μm) (a) 12 MeV质子辐照FD电势变化; (b) 饱和输出变化

    Fig. 15.  Local irradiation (Y < 2.1 μm): (a) FD potential irradiated by 12 MeV protons; (b) saturation output.

    图 16  质子局部辐照(Y < 2.1 μm)前后浮置扩散区耗尽层厚度 (a) 辐照前; (b) 12 MeV质子辐照后; (c) 60 MeV质子辐照后

    Fig. 16.  Depletion region of FD region before and after local proton irradiation simulation (Y < 2.1 μm): (a) Before irradiation; (b) after irradiation by 12 MeV protons; (b) after irradiation by 60 MeV protons.

    图 17  60 MeV质子局部辐照(Y<2.1 μm)TG下方沟道和浮置扩散区的电子浓度

    Fig. 17.  Electron density in the channel below TG and FD region after local proton irradiation simulation (Y < 2.1 μm).

    表 1  辐照参数

    Table 1.  Irradiation parameters.

    CIS编号质子能量/MeV最大质子注量/cm–2DDD/(TeV·g–1)TID/krad(Si)
    CIS_1122.0×101217638962
    CIS_2, 3, 4602.0×10128286275
    下载: 导出CSV

    表 2  12 MeV和60 MeV质子等效计算结果

    Table 2.  Equivalent results for 12 MeV and 60 MeV protons.

    质子能量
    /MeV
    质子注量
    /(1011cm–2)
    等效中子
    注量
    /(1011 cm–2)
    等效TID
    /krad(Si)
    121.03.048.1
    4.012.0192.3
    7.021.0336.6
    10.030.0480.8
    601.01.013.7
    4.04.055.1
    7.07.096.4
    10.010.0137.4
    下载: 导出CSV
  • [1]

    王祖军, 刘静, 薛院院, 何宝平, 姚志斌, 盛江坤 2017 半导体光电 38 1

    Wang Z J, Liu J, Xue Y Y, He B P, Yao Z B, Sheng J K 2017 Semiconductor Optoelectronics 38 1

    [2]

    Goiffon V, Estribeau M, Magnan P 2009 IEEE Trans. Electron Devices 56 2594Google Scholar

    [3]

    Virmontois C, Goiffon V, Magnan P, Girard S, Inguimbert C, Petit S, Rolland G, Saint-Pe O 2010 IEEE Trans. Nucl. Sci. 57 3101

    [4]

    Le Roch A, Virmontois C, Paillet P, Belloir J M, Rizzolo S, Marcelot O, Dewitte H, Van Uffelen M, Casellas L M, Magnan P, Goiffon V 2020 IEEE Trans. Nucl. Sci. 67 1241Google Scholar

    [5]

    汪波, 李豫东, 郭旗, 刘昌举, 文林, 玛丽娅, 孙静, 王海娇, 丛忠超, 马武英 2014 物理学报 63 056102Google Scholar

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ma L Y, Sun J, Wang H J, Cong Z C, Ma W Y 2014 Acta Phys. Sin. 63 056102Google Scholar

    [6]

    王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发 2016 物理学报 65 024212Google Scholar

    Wang F, Li Y D, Guo Q, Wang B, Zhang X Y, Wen L, He C F 2016 Acta Phys. Sin. 65 024212Google Scholar

    [7]

    Rizzolo S, Goiffon V, Estribeau M, Paillet P, Marcandella C, Durnez C, Magnan P 2018 IEEE Trans. Nucl. Sci. 65 84Google Scholar

    [8]

    汪波, 李豫东, 郭旗, 文林, 孙静, 王帆, 张兴尧, 玛丽娅 2015 强激光与粒子束 27 210Google Scholar

    Wang B, Li Y D, Guo Q, Wen L, Sun J, Wang F, Zhang X Y, Ma L Y 2015 High Power Laser Part. Beams 27 210Google Scholar

    [9]

    汪波, 李豫东, 郭旗, 刘昌举, 文林, 任迪远, 曾骏哲, 玛丽娅 2015 物理学报 64 084209Google Scholar

    Wang B, Li Y D, Guo Q, Liu C J, Wen L, Ren D Y, Zeng J Z, Ma L Y 2015 Acta Phys. Sin. 64 084209Google Scholar

    [10]

    Fu J, Feng J, Li Y D, Guo Q, Wen L, Zhou D, Zhang X, Cai Y L, Liu B K 2021 Radiat. Phys. Chem. 182 109384Google Scholar

    [11]

    Wang Z J, Xue Y Y, Guo X Q, Bian J Y, Yao Z B, He B P, Ma W Y, Sheng J K, Dong G T, Liu Y 2018 Nucl. Instrum. Methods A 895 35Google Scholar

    [12]

    Goiffon V, Estribeau M, Marcelot O, Cervantes P, Magnan P, Gaillardin M, Virmontois C, Martin-Gonthier P, Molina R, Corbiere F, Girard S, Paillet P, Marcandella C 2012 IEEE Trans. Nucl. Sci. 59 2878Google Scholar

    [13]

    Wang Z J, Ma W Y, Huang S Y, Yao Z B, Liu M B, He B P, Liu J, Sheng J K, Xue Y 2016 AIP Adv. 6 035205Zujun Wang, Wuying Ma, Shaoyan Huang, Zhibin Yao, Minbo Liu, Baoping He, Jing Liu, Jiangkun Sheng, Yuan Xue

    [14]

    Meng X, Stefanov K D, Holland A D 2020 IEEE Trans. Nucl. Sci. 67 1107Google Scholar

    [15]

    Virmontois C, Durnez C, Estribeau M, Cervantes P, Avon B, Goiffon V, Magnan P, Materne A, Bardoux A 2017 IEEE Trans. Nucl. Sci. 64 38Google Scholar

    [16]

    Lai S K, Wang Z J, Huang G, Xue Y Y, Nie X, Tang N, Yan S X, Wang X H 2023 Nucl. Instrum. Methods A 1050 168069Google Scholar

    [17]

    杨勰, 霍勇刚, 王祖军, 尚爱国, 薛院院, 贾同轩 2022 光学学报 42 0723002Google Scholar

    Yang X, Huo Y G, Wang Z J, Shang A G, Xue Y Y, Jia T X 2022 Acta Opt. Sin. 42 0723002Google Scholar

    [18]

    Peng Z G, Fu Y J, Wei Y, Zuo Y H, Niu S L, Zhu J H, Guo Y X, Liu F, Li P, He C H, Li Y H 2024 AIP Advances 14 015211Google Scholar

    [19]

    Wang Z M, Chen W, Qiu M T, Yan Y H, Zhang H, Wang M W, Wang B C, Yang Y, Wang D, Liu W L, Wang M C, Lv W, Zhao M T, Zhao C, Wei C Y, Yao H J, Zheng S X, Wang X W, Guan X L, Xing Q Z, Cheng C, Du T B, Zhang H Y, Lei Y, Wang D, Du C T, Ma P F, Liu X Y, Li Y, Ye W B, Yu X D 2022 Nucl. Instrum. Methods A 1027 166283Google Scholar

    [20]

    Khan U, Sarkar M 2018 IEEE Trans. Electron Devices 65 2892Google Scholar

    [21]

    Wang Z J, Xue Y Y, Wang Z M, Chen W, Yin L Y, Wang X H, Nie X, Lai S K, Huang G, Wang M C, Ding L L, He B P, Ma W Y, Gou S L 2024 Nucl. Instrum. Methods A 1058 168784Google Scholar

    [22]

    Petrosyants K O, Kozhukhov M V 2016 IEEE Trans. Nucl. Sci. 63 2016Google Scholar

    [23]

    Poivey C, Hopkinson G 2009 ESA—EPFL Space Center Workshop June, 2009 p9

    [24]

    Wang C H, Bai X Y, Chen W, Yang S C, Liu Y, Jin X M, Ding L L 2015 Nucl. Instrum. Methods A 796 108Google Scholar

    [25]

    Gregory B L, Gwyn C W 1970 IEEE Trans. Nucl. Sci. 17 325Google Scholar

    [26]

    Marshall C J , Marshall P W 1999 Nuclear and Space Radiation Effects Conference, Short Course Norfolk, Virginia, July 12-16, 1999 p50

    [27]

    Lee M S, Lee H C 2013 IEEE Trans. Nucl. Sci. 60 3084Google Scholar

    [28]

    Johnston A H, Swimm R T, Allen G R, Miyahira T F 2009 IEEE Trans. Nucl. Sci. 56 1941Google Scholar

    [29]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1332Google Scholar

  • [1] 朱文璐, 郭红霞, 李洋帆, 马武英, 张凤祁, 白如雪, 钟向丽, 李济芳, 曹彦辉, 琚安安. 双沟槽SiC MOSFET总剂量效应研究. 物理学报, doi: 10.7498/aps.74.20241641
    [2] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, doi: 10.7498/aps.73.20231829
    [3] 张书豪, 袁章亦安, 乔明, 张波. 超薄屏蔽层300 V SOI LDMOS抗电离辐射总剂量仿真研究. 物理学报, doi: 10.7498/aps.71.20220041
    [4] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, doi: 10.7498/aps.71.20211795
    [5] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, doi: 10.7498/aps.71.20211838
    [6] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, doi: 10.7498/aps.70.20211795
    [7] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, doi: 10.7498/aps.70.20202028
    [8] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, doi: 10.7498/aps.70.20201835
    [9] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, doi: 10.7498/aps.67.20180829
    [10] 王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发. 基于4晶体管像素结构的互补金属氧化物半导体图像传感器总剂量辐射效应研究. 物理学报, doi: 10.7498/aps.65.024212
    [11] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, doi: 10.7498/aps.63.226101
    [12] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应. 物理学报, doi: 10.7498/aps.62.176106
    [13] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应. 物理学报, doi: 10.7498/aps.62.036105
    [14] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响. 物理学报, doi: 10.7498/aps.61.050702
    [15] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究. 物理学报, doi: 10.7498/aps.61.106103
    [16] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, doi: 10.7498/aps.60.116103
    [17] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, doi: 10.7498/aps.60.096104
    [18] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, doi: 10.7498/aps.59.1970
    [19] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, doi: 10.7498/aps.53.194
    [20] 郭红霞, 陈雨生, 张义门, 周辉, 龚建成, 韩福斌, 关颖, 吴国荣. 稳态、瞬态X射线辐照引起的互补性金属-氧化物-半导体器件剂量增强效应研究. 物理学报, doi: 10.7498/aps.50.2279
计量
  • 文章访问数:  265
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-26
  • 修回日期:  2024-12-05
  • 上网日期:  2024-12-10

/

返回文章
返回