搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄屏蔽层300 V SOI LDMOS抗电离辐射总剂量仿真研究

张书豪 袁章亦安 乔明 张波

引用本文:
Citation:

超薄屏蔽层300 V SOI LDMOS抗电离辐射总剂量仿真研究

张书豪, 袁章亦安, 乔明, 张波

Simulation study on radiation hardness for total ionizing dose effect of ultra-thin shielding layer 300 V SOI LDMOS

Zhang Shu-Hao, Yuan Zhang-Yi-An, Qiao Ming, Zhang Bo
PDF
HTML
导出引用
  • 本文研究了300 V绝缘体上硅横向双扩散金属氧化物半导体场效应管在电离辐射总剂量效应下的线性电流退化机理, 提出了一种具有超薄屏蔽层的抗辐射结构实现线性电流加固. 超薄屏蔽层位于器件场氧化层的下方, 旨在阻止P型掺杂层表面发生反型, 从而截断表面电流路径, 有效抑制线性电流的退化. 对于横向双扩散金属氧化物半导体场效应管, 漂移区上的场氧化层中引入的空穴对线性电流的退化起着主导作用. 本文基于器件工艺仿真软件, 研究器件在辐照前后的电学特性, 对超薄屏蔽层的长度、注入能量、横向间距进行优化, 给出相应的剂量窗口, 在电离辐射总剂量为0—500 krad(Si)的条件下, 将最大线性电流增量从传统结构的447%缩减至10%以内, 且辐照前后击穿电压均维持在300 V以上.
    In this work, the linear current degradation mechanism of 300 V silicon-on-insulator laterally double-diffused metal-oxide-semiconductor field effect transistor under total ionizing effect is studied, and a method in radiation-hardness for linear current by introducing an ultra-thin shielding layer is proposed. This new structure is realized with P-type ultra-thin shielding layer implantation under field oxide, in order to prevent the P-type layer from complete surface inversion, thereby truncating the surface current route and mitigating the current degradation effectively. For a laterally double-diffused metal-oxide-semiconductor field effect transistor, linear current degradation can be attributed mainly to holes introduced in the field oxide. In this work, the influence of introduced holes on electrical properties in the transistor oxides under harsh environment is simulated based on device and process simulation software, with optimized layer length, implantation energy, lateral distance and dose window, and the goal of linear current hardness (linear current increment decreasing from 447% in conventional structure to less than 10% in proposed structure) is achieved while maintaining pre-rad and post-rad breakdown voltages above 300 V under total dose of 0–500 krad(Si).
      通信作者: 乔明, qiaoming@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62174024)和广东省基础与应用基础研究基金(批准号: 2021B1515020031)资助的课题.
      Corresponding author: Qiao Ming, qiaoming@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62174024), and the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2021B1515020031).
    [1]

    Winokur P S, Lum G K, Shaneyfelt M R, Sexton F W, Hash G L, Scott L 1999 IEEE Trans. Nucl. Sci. 46 1494Google Scholar

    [2]

    Barth J L, Dyer C S, Stassinopoulos E G 2003 IEEE Trans. Nucl. Sci. 50 466Google Scholar

    [3]

    Pease R L 1996 IEEE Trans. Nucl. Sci. 43 442Google Scholar

    [4]

    Oldham T R, Mclean B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [5]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [6]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 461Google Scholar

    [7]

    Titus J L 2013 IEEE Trans. Nucl. Sci. 60 1912Google Scholar

    [8]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [9]

    Jiang J Z, Shu W, Chong K S, Lin T, Zwa Lwin N K, Chang J S, Liu J Y 2016 IEEE International Symposium on Circuits and Systems Montreal, Canada May 22–25, 2016 p5

    [10]

    Xie X D, Yang Z Z, Deng M X, Chen K B, Li W 2019 IEEE Trans. Device Mater. Reliab. 19 242Google Scholar

    [11]

    范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红 2012 物理学报 61 016106Google Scholar

    Fan X, Li W, Li P, Zhang B, Xie X D, Wang G, Hu B, Zhai Y H 2012 Acta Phys. Sin. 61 016106Google Scholar

    [12]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [13]

    Hughes H L, Benedetto J M 2003 IEEE Trans. Nucl. Sci. 50 500Google Scholar

    [14]

    刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103Google Scholar

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103Google Scholar

    [15]

    Wu M, Zhang C C, Peng W, Xu J, Jin H, Zeng Y, Chen Z J 2020 IEEE Trans. Nucl. Sci. 67 708Google Scholar

    [16]

    Sorge R, Schmidt J, Reimer F, Wipf C, Korndoerfer F, Pliquett R, Barth R 2019 Nucl. Instr. and Meth. in Phys. Res. 924 166Google Scholar

    [17]

    Ali K B, Gammon P M, Chan C W, Li F, Pathirana V, Trajkovic T, Gity F, Flandre D, Kilchytska V 2017 47 th European Solid State Device Research Conference Leuven, Belgium, September 11–14, 2017 p236

    [18]

    Liu M X, Han Z S, Bi J S, Fan X M, Liu G, Du H 2009 J. Semicond. 30 014004Google Scholar

    [19]

    Qiao F Y, Pan L Y, Wu D, Liu L F, Xu J 2014 J. Semicond. 35 024003Google Scholar

    [20]

    Liu M X, Han Z S, Bi J S, Fan X M, Liu G, Du H, Song L M 2008 J. Semicond. 29 2158

    [21]

    Li Y F, Zhu S L, Wu J W, Hong G S, Xu Z 2019 J. Semicond. 40 052401Google Scholar

    [22]

    Asano M, Sekigawa D, Hara K, Aoyagi W, Honda S, Tobita N, Arai Y, Miyoshi T, Kurachi I, Tsuboyama T, Yamada M 2016 Nucl. Instr. and Meth. in Phys. Res. 831 315Google Scholar

    [23]

    Schwank J R, Ferlet- Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522Google Scholar

    [24]

    Huang Y, Li B H, Zhao X, Zheng Z S, Gao J T, Zhang G, Li B, Zhang G H, Tang K, Han Z S, Luo J J 2018 IEEE Trans. Nucl. Sci. 65 1532Google Scholar

    [25]

    Yuan Z Y A, Qiao M, Li X J, Hou D C, Zhang S H, Zhou X, Li Z J, Zhang B 2021 IEEE Trans. Electron Devices 68 2064Google Scholar

    [26]

    Huang Y S, Baliga B J 1991 3rd International Symposium on Power Semiconductor Devices and ICs, Baltimore, USA April 22-24, 1991 27

    [27]

    Imam M, Hossain Z, Quddus M, Adams J, Hoggatt C, Ishiguro T, Nair R 2003 IEEE Trans. Electron Devices 50 1697Google Scholar

    [28]

    Ludikhuize A W 2000 12 th International Symposium on Power Semiconductor Devices and ICs, Toulouse, France May 22–25, 2000 11

  • 图 1  (a) 300 V SOI LDMOS传统结构及线性电流退化机理; (b)本文提出的300 V SOI LDMOS加固结构及线性电流加固机理

    Fig. 1.  (a) Conventional structure of 300 V SOI LDMOS and mechanism of linear current degradation under TID effect; (b) proposed rad-hard structure of 300 V SOI LDMOS and linear current hardness mechanism.

    图 2  传统结构中, (a) DPTOP对辐照前后VB, Idlin的影响; (b) DPTOP = $ 5\times {10}^{11} $ cm–2, 辐照前后线性电流密度分布, 其中横坐标表示距PTOP表面的纵向距离

    Fig. 2.  In the conventional structure, (a) impact of DPTOP on pre-rad and post-rad VB and Idlin; (b) distribution of pre-rad and post-rad linear current density when DPTOP = $ 5\times {10}^{11} $ cm–2, wherein X axis represents vertical distance to PTOP surface.

    图 3  不同注入能量下PSL掺杂浓度NPSL分布, 横坐标表示距PTOP表面的纵向距离

    Fig. 3.  Distribution of PSL doping concentration NPSL under various implantation energy EPSL, wherein X axis represents vertical distance to PTOP surface.

    图 4  d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, DPTOP = $ 5\times {10}^{11} $ cm–2条件下, DPSL在不同注入能量下对辐照前后VBIdlin的影响 (a) EPSL = 170 keV; (b) EPSL = 200 keV; (c) EPSL = 230 keV

    Fig. 4.  d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, DPTOP = $ 5\times {10}^{11} $ cm–2, impact of DPSL on pre-rad and post-rad VB and Idlin for (a) EPSL = 170 keV; (b) EPSL = 200 keV; (c) EPSL = 230 keV.

    图 5  d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, 不同DPSL对辐照前后VB, Idlin的影响: (a) DPTOP = $ 5\times {10}^{11} $ cm–2; (b) DPTOP = $ 6\times {10}^{11} $ cm–2; (c) DPTOP = $ 7\times {10}^{11} $ cm–2; (d) DPTOP = $ 8\times {10}^{11} $ cm–2

    Fig. 5.  Impact of DPSL on pre-rad and post-rad VB and Idlin for (a) DPTOP = $ 5\times {10}^{11} $ cm–2; (b) DPTOP = $ 6\times {10}^{11} $ cm–2; (c) DPTOP = $ 7\times {10}^{11} $ cm–2; (d) DPTOP = $ 8\times {10}^{11} $ cm–2 when d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV.

    图 6  d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, DPTOP = $ 7\times {10}^{11} $ cm–2, 不同DPSL对应的漂移区硅表面电场分布 (a) 辐照前; (b) 辐照后. 图(a)中内插图标明坐标原点OX方向

    Fig. 6.  Silicon surface electric field distribution in drift region under various DPSL for (a) pre-rad and (b) post-rad conditions when d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, DPTOP = $ 7\times {10}^{11} $ cm–2. Inset indicates origin of the coordinate and X direction

    图 7  LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, d对辐照前后VBIdlin的影响: (a) DPTOP = $ 5\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2; (b) DPTOP = $ 6\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2

    Fig. 7.  Impact of d on pre-rad and post-rad VB and Idlin when LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV for (a) DPTOP = $ 5\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2; (b) DPTOP = $ 6\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2.

    图 8  DPTOP = $ 5\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2, EPSL = 190 keV, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, (a)不同d值下, 器件的辐照前与辐照后转移特性曲线; (b) d = 2, 4, 6, 8 $ \mathrm{\mu }\mathrm{m} $, 辐照后线性电流密度分布, 其中横坐标表示距PTOP表面的纵向距离

    Fig. 8.  DPTOP = $ 5\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2, EPSL = 190 keV, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, (a) Pre-rad and post-rad transfer curves under various d; (b) distribution of post-rad linear current density when d = 2, 4, 6, 8 $ \mathrm{\mu }\mathrm{m} $, wherein X axis represents vertical distance to PTOP surface.

    图 9  DPTOP = $ 5\times {10}^{11} $ cm–2, d = 8 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, 不同LPSL对辐照前后VB, Idlin的影响: (a) DPSL = $ 8\times {10}^{12} $ cm–2; (b) DPSL = $ 9\times {10}^{12} $ cm–2; (c) DPSL = $ 1\times {10}^{13} $ cm–2; (d) DPSL = $ 1.1\times {10}^{13} $ cm–2

    Fig. 9.  Impact of LPSL on pre-rad and post-rad VB and Idlin for (a) DPSL = $ 8\times {10}^{12} $ cm–2; (b) DPSL = $ 9\times {10}^{12} $ cm–2; (c) DPSL = $ 1\times {10}^{13} $ cm–2; (d) DPSL = $ 1.1\times {10}^{13} $ cm–2 when DPTOP=$ 5\times {10}^{11} $cm–2, d = 8 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV.

  • [1]

    Winokur P S, Lum G K, Shaneyfelt M R, Sexton F W, Hash G L, Scott L 1999 IEEE Trans. Nucl. Sci. 46 1494Google Scholar

    [2]

    Barth J L, Dyer C S, Stassinopoulos E G 2003 IEEE Trans. Nucl. Sci. 50 466Google Scholar

    [3]

    Pease R L 1996 IEEE Trans. Nucl. Sci. 43 442Google Scholar

    [4]

    Oldham T R, Mclean B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [5]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [6]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 461Google Scholar

    [7]

    Titus J L 2013 IEEE Trans. Nucl. Sci. 60 1912Google Scholar

    [8]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [9]

    Jiang J Z, Shu W, Chong K S, Lin T, Zwa Lwin N K, Chang J S, Liu J Y 2016 IEEE International Symposium on Circuits and Systems Montreal, Canada May 22–25, 2016 p5

    [10]

    Xie X D, Yang Z Z, Deng M X, Chen K B, Li W 2019 IEEE Trans. Device Mater. Reliab. 19 242Google Scholar

    [11]

    范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红 2012 物理学报 61 016106Google Scholar

    Fan X, Li W, Li P, Zhang B, Xie X D, Wang G, Hu B, Zhai Y H 2012 Acta Phys. Sin. 61 016106Google Scholar

    [12]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [13]

    Hughes H L, Benedetto J M 2003 IEEE Trans. Nucl. Sci. 50 500Google Scholar

    [14]

    刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103Google Scholar

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103Google Scholar

    [15]

    Wu M, Zhang C C, Peng W, Xu J, Jin H, Zeng Y, Chen Z J 2020 IEEE Trans. Nucl. Sci. 67 708Google Scholar

    [16]

    Sorge R, Schmidt J, Reimer F, Wipf C, Korndoerfer F, Pliquett R, Barth R 2019 Nucl. Instr. and Meth. in Phys. Res. 924 166Google Scholar

    [17]

    Ali K B, Gammon P M, Chan C W, Li F, Pathirana V, Trajkovic T, Gity F, Flandre D, Kilchytska V 2017 47 th European Solid State Device Research Conference Leuven, Belgium, September 11–14, 2017 p236

    [18]

    Liu M X, Han Z S, Bi J S, Fan X M, Liu G, Du H 2009 J. Semicond. 30 014004Google Scholar

    [19]

    Qiao F Y, Pan L Y, Wu D, Liu L F, Xu J 2014 J. Semicond. 35 024003Google Scholar

    [20]

    Liu M X, Han Z S, Bi J S, Fan X M, Liu G, Du H, Song L M 2008 J. Semicond. 29 2158

    [21]

    Li Y F, Zhu S L, Wu J W, Hong G S, Xu Z 2019 J. Semicond. 40 052401Google Scholar

    [22]

    Asano M, Sekigawa D, Hara K, Aoyagi W, Honda S, Tobita N, Arai Y, Miyoshi T, Kurachi I, Tsuboyama T, Yamada M 2016 Nucl. Instr. and Meth. in Phys. Res. 831 315Google Scholar

    [23]

    Schwank J R, Ferlet- Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522Google Scholar

    [24]

    Huang Y, Li B H, Zhao X, Zheng Z S, Gao J T, Zhang G, Li B, Zhang G H, Tang K, Han Z S, Luo J J 2018 IEEE Trans. Nucl. Sci. 65 1532Google Scholar

    [25]

    Yuan Z Y A, Qiao M, Li X J, Hou D C, Zhang S H, Zhou X, Li Z J, Zhang B 2021 IEEE Trans. Electron Devices 68 2064Google Scholar

    [26]

    Huang Y S, Baliga B J 1991 3rd International Symposium on Power Semiconductor Devices and ICs, Baltimore, USA April 22-24, 1991 27

    [27]

    Imam M, Hossain Z, Quddus M, Adams J, Hoggatt C, Ishiguro T, Nair R 2003 IEEE Trans. Electron Devices 50 1697Google Scholar

    [28]

    Ludikhuize A W 2000 12 th International Symposium on Power Semiconductor Devices and ICs, Toulouse, France May 22–25, 2000 11

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [3] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211795
    [4] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [5] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [6] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应. 物理学报, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [7] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [8] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [9] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [10] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [11] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [12] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应. 物理学报, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [13] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应. 物理学报, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [14] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响. 物理学报, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [15] 周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光. 辐照下背栅偏置对部分耗尽型绝缘层上硅器件背栅效应影响及机理分析. 物理学报, 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [16] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究. 物理学报, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [17] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [18] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [19] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [20] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
计量
  • 文章访问数:  4282
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-01-29
  • 上网日期:  2022-02-16
  • 刊出日期:  2022-05-20

/

返回文章
返回