搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型绝缘体上硅静态随机存储器单元总剂量效应

王硕 常永伟 陈静 王本艳 何伟伟 葛浩

引用本文:
Citation:

新型绝缘体上硅静态随机存储器单元总剂量效应

王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩

Total ionizing dose effects on innovative silicon-on-insulator static random access memory cell

Wang Shuo, Chang Yong-Wei, Chen Jing, Wang Ben-Yan, He Wei-Wei, Ge Hao
PDF
HTML
导出引用
  • 静态随机存储器作为现代数字电路系统中常见且重要的高速存储模块, 对于提升电子系统性能具有重要作用. 到目前为止, 关于静态随机存储器单元总剂量辐射效应的数据依然有待补充完善. 本文采用130 nm绝缘体上硅工艺, 设计制备了一种基于L型栅体接触场效应晶体管器件的6晶体管静态随机存储器单元. 该L型栅体接触器件遵循静态随机存储器单元中心对称的版图特点, 使得存储单元面积相比于采用同器件尺寸的T型栅体接触器件的静态随机存储器单元减小约22%. 文中对比研究了L型栅体接触器件与其他场效应晶体管之间的电学性能差异, 以及基于不同场效应晶体管静态随机存储器单元的漏电流和读状态下静态噪声容限随辐射总剂量增加的变化规律. 测试结果表明, L型栅体接触器件与T型栅体接触器件的器件性能接近, 但前者具有面积更小的优势; 同时基于L型栅体接触场效应晶体管的静态随机存储器单元的基本电学性能以及抗总剂量辐射效应均优于传统基于浮体场效应晶体管的静态随机存储器单元, 因而具有稳定可靠的实用价值.
    The static random access memory (SRAM), as a common and important high-speed storage module in modern digital circuit systems, plays an important role in improving the performances of electronic systems. The data about the total ionizing dose (TID) radiation effect of SRAM cell have not been rich in the literature so far. In this work, a novel 6-transistor SRAM cell (6T LB SRAM cell) based on L-type gate body-contact (LB) MOSFET device is designed and fabricated by 130nm silicon-on-insulator (SOI) process. The LB MOSFET follows the center-symmetric layout design of the SRAM cell, reducing the area by approximately 22% compared with the SRAM cell using the T-type gate MOSFET contact device (6T TB SRAM cell) of the same device size. The electrical performance difference between LB MOSFET and other devices is compared. Besides this, the variations of the leakage current and the reading static noise margin (RSNM) of SRAM cells based on different MOSFETs under various total ionizing doses are also investigated. The test results indicate that the LB MOS successfully suppresses the floating body effect (FBE), and that the drain-induced barrier lowing (DIBL) and drain-to-source breakdown voltage (BVds) characteristics are improved. The performance of this device is similar to that of TB MOS device, but due to the special body contact design, the former has an advantage of smaller area. Due to the use of the body contact device, the leakage current of the 6T LB SRAM cell is significantly smaller than that of the conventional floating device SRAM cell (6T FB SRAM cell), which has lower static power consumption. After 60Co-γ ray irradiation, the 700 krad(Si) radiation dose only increases the leakage current of 6T LB SRAM cell by 21.9%, which is better than 41.4% of 6T FB SRAM cell. In addition, the 6T LB SRAM cell has an RSNM value similar to that of the 6T TB SRAM cell, and this is 1.93 times higher than the that of 6T FB SRAM cell. The radiation experiment causes the butterfly curve of the 6T FB SRAM cell to be asymmetrically deformed, and the stability of the SRAM cell is deteriorated due to the TID effect. However, the test results show that when the radiation dose reaches 700 krad (Si), the RSNM value of the 6T LB SRAM cell is reduced only by 11.2%. Therefore, 6T LB SRAM cell has stable and reliable practical value.
      通信作者: 陈静, jchen@mail.sim.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61574153)资助的课题.
      Corresponding author: Chen Jing, jchen@mail.sim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574153).
    [1]

    Schwank J R, Cavrois F, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522Google Scholar

    [2]

    Verma S, Abdullah M 2015 Int. J. Computer Appl. 130 17

    [3]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [4]

    Yao X Y, Hindman N, Clark L T, Holbert K E, Alexander D R, Shedd W M 2008 IEEE Trans. Nucl. Sci. 55 3280Google Scholar

    [5]

    Annamalai N K, Biwer M C 1988 IEEE Trans. Nucl. Sci. 35 1372Google Scholar

    [6]

    Colinge J P, Terao A 1993 IEEE Trans. Nucl. Sci. 40 78Google Scholar

    [7]

    Schwank J R, Shaneyfelt M R, Draper B L, Dodd P E 1999 IEEE Trans. Nucl. Sci. 46 1809Google Scholar

    [8]

    Parke S, DeGregorio K, Goldston M, Hayhurst R, Hackler D 2005 IEEE Aerospace Conference

    [9]

    Mercha A, Rafi J M, Simoen E, Augendre E, Claeys C 2003 IEEE Trans. Electron Devices 50 1675Google Scholar

    [10]

    Chaudhry A, Kumar M J 2004 IEEE Trans. Device Mater. Reliab. 4 99Google Scholar

    [11]

    Kaifi M, Siddiqui M J 2011 International Conference on Multimedia, Signal Processing and Communication Technologies, Aligarh, Uttar Pradesh, India December17—19, 2011 p216

    [12]

    Maeda S, Hirano Y, Yamaguchi Y, Iwamatsu T, Ipposhi T, Ueda K, Mashiko K, Maegawa S, Abe H, Nishimura T 1999 IEEE Trans. Electron Devices 46 151Google Scholar

    [13]

    Singh J, Mohanty S P, Pradhan D K 2013 Robust SRAM Designs and Analysis (New York: Springer Science+Business Media) pp31—56

    [14]

    He W W, Chen J, Luo J X, Chai Z, Wang X 2016 Electron. Lett. 52 1172Google Scholar

    [15]

    Arora 1993 MOSFET Models for VLSI Circuit Simulation: Theory and Practice (Berlin: Springer) pp210—219

    [16]

    Ning B X, Zhang Z X 2013 International Journal of Electronics and Electrical Engineering 1 31Google Scholar

    [17]

    Youk G U, Khare P S, Schrimpf R D, Massengill L W, Galloway K F 1999 IEEE Trans. Nucl. Sci. 46 1830Google Scholar

    [18]

    Peng C, Zhang Z X, Hu Z Y, Huang H X, Ning B X, Bi D W 2013 Chin. Phys. Lett. 30 098502Google Scholar

    [19]

    Seevinck E, List F J, Lohstroh J 1987 IEEE J. Solid-State Circuits 22 748Google Scholar

    [20]

    宁冰旭 2013 博士学位论文(上海: 中国科学院上海微系统与信息技术研究所)

    Ning B X 2013 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology March) (in Chinese)

    [21]

    Re V, Manghisoni M, Ratti L, Speziali V, Traversi G 2005 IEEE Radiat. Eff. Data Workshop 122

    [22]

    Uyemura J P 2002 Introduction to VLSI Circuits and Systems (Hoboken: Wiley) pp237—244

  • 图 1  (a) FB NMOS版图; (b) TB NMOS版图; (c) LB NMOS 3维示意图; (d) LB PMOS版图; (e) LB NMOS版图; (f) LB NMOS器件沿(e)图线A-A'截取的器件横截面图

    Fig. 1.  (a) The layout of FB SOI nMOSFET; (b) the layout of TB SOI nMOSFET; (c) the LB nMOSFET 3-dimensional schematic; (d) the layout of LB pMOSFET; (e) the layout of LB nMOSFET; (f) a cross-sectional view of LB nMOSFET is taken along line A-A' in (e).

    图 2  FB, TB和LB NMOS器件的 (a) 转移特性曲线和跨导; (b) ID-VG曲线; (c) 输出特性曲线; (d) BVds曲线

    Fig. 2.  (a) Transmission characteristic curve and transconductance; (b) ID-VG curve; (c) output characteristic curve; (d) BVds curves for the FB, TB and LB NMOS devices.

    图 3  (a) 基于FB器件的6管静态随机存储器单元的原理图; (b) 基于LB(或TB)器件的6管静态随机存储器单元的原理图

    Fig. 3.  SOI SRAM cell schematic circuit of (a) The 6T FB SRAM cell; (b) the 6T LB SRAM cell or 6T TB SRAM cell.

    图 4  (a) 基于FB器件的6管静态随机存储器单元的版图示意图; (b) 基于LB器件的6管静态随机存储器单元的版图示意图; (c) 基于TB器件的6管静态随机存储器单元的版图示意图

    Fig. 4.  SOI SRAM cell schematic layout of (a) The 6T FB SRAM cell; (b) the 6T LB SRAM cell; (c) the 6T TB SRAM cell.

    图 5  基于LB, TB和FB MOS器件的静态随机存储器单元的RSNM曲线

    Fig. 5.  The RSNM curves of FB/TB/LB SRAM cell.

    图 6  (a) 6T FB SRAM cell与 (b) 6T LB SRAM cell的漏电流测试电路及漏电路径示意图(假定Q存储1逻辑值, QB存储0逻辑值)

    Fig. 6.  The leakage current test circuit and the leakage path diagram of (a) 6T FB SRAM cell and (b) 6T LB SRAM cell (Assuming Q stores 1 logical value and QB stores 0 logical value)

    图 7  基于LB和FB MOS器件的静态随机存储器单元的漏电流在不同辐射总剂量下的变化情况

    Fig. 7.  The cell leakage current of 6T FB SRAM cell and 6T LB SRAM cell at different radiation doses.

    图 8  (a)基于FB MOS器件的静态随机存储器单元和(b)基于LB MOS器件的静态随机存储器单元的读取静态噪声容限受总剂量辐射的影响

    Fig. 8.  (a) 6T FB Cell read stability and (b) 6T LB Cell read stability under various radiation doses.

    表 1  基于LB和FB MOS器件静态随机存储器单元在辐照过程中的偏置条件

    Table 1.  Bias conditions of 6T LB cell and 6T FB cell during irradiation.

    测试项VDDGNDSUBWLBLBLBQQB
    漏电流(Ileakage)/V1.320001.321.32
    读取静态噪声容限(RSNM)/V1.32001.321.321.3201.32
    下载: 导出CSV
  • [1]

    Schwank J R, Cavrois F, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522Google Scholar

    [2]

    Verma S, Abdullah M 2015 Int. J. Computer Appl. 130 17

    [3]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [4]

    Yao X Y, Hindman N, Clark L T, Holbert K E, Alexander D R, Shedd W M 2008 IEEE Trans. Nucl. Sci. 55 3280Google Scholar

    [5]

    Annamalai N K, Biwer M C 1988 IEEE Trans. Nucl. Sci. 35 1372Google Scholar

    [6]

    Colinge J P, Terao A 1993 IEEE Trans. Nucl. Sci. 40 78Google Scholar

    [7]

    Schwank J R, Shaneyfelt M R, Draper B L, Dodd P E 1999 IEEE Trans. Nucl. Sci. 46 1809Google Scholar

    [8]

    Parke S, DeGregorio K, Goldston M, Hayhurst R, Hackler D 2005 IEEE Aerospace Conference

    [9]

    Mercha A, Rafi J M, Simoen E, Augendre E, Claeys C 2003 IEEE Trans. Electron Devices 50 1675Google Scholar

    [10]

    Chaudhry A, Kumar M J 2004 IEEE Trans. Device Mater. Reliab. 4 99Google Scholar

    [11]

    Kaifi M, Siddiqui M J 2011 International Conference on Multimedia, Signal Processing and Communication Technologies, Aligarh, Uttar Pradesh, India December17—19, 2011 p216

    [12]

    Maeda S, Hirano Y, Yamaguchi Y, Iwamatsu T, Ipposhi T, Ueda K, Mashiko K, Maegawa S, Abe H, Nishimura T 1999 IEEE Trans. Electron Devices 46 151Google Scholar

    [13]

    Singh J, Mohanty S P, Pradhan D K 2013 Robust SRAM Designs and Analysis (New York: Springer Science+Business Media) pp31—56

    [14]

    He W W, Chen J, Luo J X, Chai Z, Wang X 2016 Electron. Lett. 52 1172Google Scholar

    [15]

    Arora 1993 MOSFET Models for VLSI Circuit Simulation: Theory and Practice (Berlin: Springer) pp210—219

    [16]

    Ning B X, Zhang Z X 2013 International Journal of Electronics and Electrical Engineering 1 31Google Scholar

    [17]

    Youk G U, Khare P S, Schrimpf R D, Massengill L W, Galloway K F 1999 IEEE Trans. Nucl. Sci. 46 1830Google Scholar

    [18]

    Peng C, Zhang Z X, Hu Z Y, Huang H X, Ning B X, Bi D W 2013 Chin. Phys. Lett. 30 098502Google Scholar

    [19]

    Seevinck E, List F J, Lohstroh J 1987 IEEE J. Solid-State Circuits 22 748Google Scholar

    [20]

    宁冰旭 2013 博士学位论文(上海: 中国科学院上海微系统与信息技术研究所)

    Ning B X 2013 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology March) (in Chinese)

    [21]

    Re V, Manghisoni M, Ratti L, Speziali V, Traversi G 2005 IEEE Radiat. Eff. Data Workshop 122

    [22]

    Uyemura J P 2002 Introduction to VLSI Circuits and Systems (Hoboken: Wiley) pp237—244

  • [1] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器. 物理学报, 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [2] 沈睿祥, 张鸿, 宋宏甲, 侯鹏飞, 李波, 廖敏, 郭红霞, 王金斌, 钟向丽. 全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元单粒子效应计算机模拟研究. 物理学报, 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [3] 陈晓亮, 孙伟锋. 180 nm嵌入式闪存工艺中高压NMOS器件工艺加固技术. 物理学报, 2022, 71(23): 236102. doi: 10.7498/aps.71.20221172
    [4] 张书豪, 袁章亦安, 乔明, 张波. 超薄屏蔽层300 V SOI LDMOS抗电离辐射总剂量仿真研究. 物理学报, 2022, 71(10): 107301. doi: 10.7498/aps.71.20220041
    [5] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [6] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [7] 郑齐文, 崔江维, 王汉宁, 周航, 余徳昭, 魏莹, 苏丹丹. 超深亚微米互补金属氧化物半导体器件的剂量率效应. 物理学报, 2016, 65(7): 076102. doi: 10.7498/aps.65.076102
    [8] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [9] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器. 物理学报, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [10] 林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩. 光梯度力驱动的纳米硅基光开关. 物理学报, 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [11] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [12] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [13] 刘红侠, 王志, 卓青青, 王倩琼. 总剂量辐照下沟道长度对部分耗尽绝缘体上硅p型场效应晶体管电特性的影响. 物理学报, 2014, 63(1): 016102. doi: 10.7498/aps.63.016102
    [14] 丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航. 静态随机存储器总剂量辐射损伤的在线与离线测试方法. 物理学报, 2014, 63(8): 086101. doi: 10.7498/aps.63.086101
    [15] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [16] 毕津顺, 刘刚, 罗家俊, 韩郑生. 22 nm工艺超薄体全耗尽绝缘体上硅晶体管单粒子瞬态效应研究. 物理学报, 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [17] 郑齐文, 余学峰, 崔江维, 郭旗, 任迪远, 丛忠超. 总剂量辐射环境中的静态随机存储器功能失效模式研究. 物理学报, 2013, 62(11): 116101. doi: 10.7498/aps.62.116101
    [18] 杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德. 硅基光栅耦合器的研究进展. 物理学报, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [19] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究. 物理学报, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [20] 舒 斌, 张鹤鸣, 朱国良, 樊 敏, 宣荣喜. 基于智能剥离技术的SOI材料制备. 物理学报, 2007, 56(3): 1668-1673. doi: 10.7498/aps.56.1668
计量
  • 文章访问数:  9743
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 修回日期:  2019-05-27
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回