搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响

陈隆 陈成克 李晓 胡晓君

引用本文:
Citation:

氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响

陈隆, 陈成克, 李晓, 胡晓君

Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films

Chen Long, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun
PDF
HTML
导出引用
  • 制备了单个颗粒(domain)组成的纳米金刚石薄膜, 薄膜中单个颗粒由尺寸超过100 nm的金刚石晶粒与非晶碳复合而成. 对薄膜进行氧化处理后, 其硅空位色心的光致发光强度增强了22.7倍. 扫描电镜及拉曼光谱测试结果表明, 不同时间氧化后的样品中存在由尺寸超过100 nm的晶粒组成的花瓣状金刚石聚集体, 这些金刚石在较长氧化时间下仍能保持稳定. 氧化后的薄膜内非晶碳大大减少, 金刚石含量增大, 纳米金刚石晶粒充分暴露引起了薄膜发光强度大幅增强, 其发光半峰宽为5.6—6.0 nm. 继续增加氧化时间, 薄膜的光致发光会因为部分细小纳米金刚石晶粒的损失而略微降低, 但是稳定的大尺寸金刚石晶粒的存在使得薄膜的发光强度依然维持在氧化前的8.3倍以上.
    In order to increase the oxidation sites for enhancing the Si-V photoluminescence intensity of nanocrytalline diamond films, we prepare nanocrystalline diamond films; these films each are comprised of separated domains and oxidized for different times. Each single domain consists of nanodiamond grains with a size of larger than 100 nm and amorphous carbon. In the gaps between domains of separated domain there is formed a film that allows more sites to contact air to ensure the efficient oxidation of the film. As a result, silicon vacancy photoluminescence intensity of the separated domain forming the film is largely enhanced by about 22.7 times after oxidation. The SEM images and Raman spectra of oxidized samples show that the film contains flower-shaped diamond aggregates, each of which is comprised of radially arranged diamond grains. The mixture of nanodiamond grains and amorphous carbon fills the gaps between diamond petals. These fillers disappear after long-term oxidation, but the diamond petals stay stable. Raman spectra show that the amount of amorphous carbon largely decreases after oxidation, while diamond content apparently rises. Hydrogen is desorbed from the film after short-time oxidation according to Raman spectra, thus the quenching effect on silicon vacancy photoluminescence caused by hydrogen termination of diamond surface state is removed. Diamond petals of large size and nanodiamond grains in the fillers are both silicon vacancy photoluminescence sources of the film; the exposed diamond flats on the surface of unoxidized domains provide limited silicon vacancy photoluminescence for the film. The sufficient exposure of diamond grains after the removal of amorphous carbon leads to the significant enhancement of film’s silicon vacancy photoluminescence. With longer-time oxidation, the photoluminescence of film will slightly decrease due to the disappearance of small-sized nanodiamond grains, but the film photoluminescence almost remains stable in both intensity and property due to the stability of large-sized diamond grains. The film after 140-min oxidation remains photoluminescence enhancement, 8.3 times the photoluminescence of the unoxidized sample. The full width at half maximum of photoluminescence peak declines to merely 5.6-6.0 nm because of diamond petals’ high degree of order, which is advantageous for diamond silicon vacancy photoluminescence.
      通信作者: 胡晓君, huxj@zjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11504325, 50972129, 50602039)、国家自然科学基金联合重点项目(批准号: U1809210)、国家国际科技合作项目(批准号: 2014DFR51160)、国家重点研发计划中欧国际合作项目(批准号: 2016YFE0133200)、浙江省重点研发计划国际科技合作“一带一路”专项(批准号: 2018C04021) 和浙江省自然科学基金(批准号: LQ15A040004, LY18E020013)资助的课题.
      Corresponding author: Hu Xiao-Jun, huxj@zjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504325, 50972129, 50602039), Joint Key Project of National Natural Science Foundation of China (Grant No. U1809210), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), the One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), and Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ15A040004, LY18E020013).
    [1]

    Aharonovich I, Englund D, Toth M 2016 Nat. Photon. 10 631Google Scholar

    [2]

    Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D, Prawer S 2011 Rep. Prog. Phys. 740 076501

    [3]

    Aharonovich I, Neu E 2014 Adv. Opt. Mater. 2 911Google Scholar

    [4]

    Schröder T, Mouradian S L, Zheng J, Trusheim M E, Walsh M, Chen E H, Li L, Bayn I, Englund D 2016 J. Opt. Soc. Am. B 33 B65Google Scholar

    [5]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [6]

    Muller T, Hepp C, Pingault B, Neu E, Gsell S, Schreck M, Sternschulte H, Steinmuller-Nethl D, Becher C, Atature M 2014 Nat. Commun. 5 3328Google Scholar

    [7]

    Merson T D, Castelletto S, Aharonovich I, Turbic A, Kilpatrick T J, Turnley A M 2013 Opt. Lett. 38 4170Google Scholar

    [8]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [9]

    Aharonovich I 2014 Nat. Photon. 8 818Google Scholar

    [10]

    Jelezko F, Wrachtrup J 2006 Phys. Status Solidi A 203 3207Google Scholar

    [11]

    Rogers L J, Jahnke K D, Teraji T, Marseglia L, Muller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4739Google Scholar

    [12]

    Neu E, Albrecht R, Fischer M, Gsell S, Schreck M, Becher C 2012 Phys. Rev. B 85 245207Google Scholar

    [13]

    Dragounová K, Ižák T, Kromka A, Potůček Z, Bryknar Z, Potocký Š 2018 Appl. Phys. A 124 219

    [14]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl. Phys. 109 053524Google Scholar

    [15]

    Klauser F, Steinmüller-Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vapor Depos. 16 127Google Scholar

    [16]

    Lin S C, Yeh C J, Kurian J, Dong C L, Niu H, Leou K C, Lin I N 2014 J. Appl. Phys. 116 183701Google Scholar

    [17]

    Wilson J I B, Walton J S, Beamson G 2001 J. Electron Spectrosc. Relat. Phenom. 121 183Google Scholar

    [18]

    Osswald S, Yushin G, Mochalin V, Kucheyev S O, Gogotsi Y 2006 J. Am. Chem. Soc. 128 11635Google Scholar

    [19]

    Pu J C, Wang S F, Sung J C 2010 J. Alloy. Compd. 489 638Google Scholar

    [20]

    Huang K, Hu X, Xu H, Shen Y, Khomich A 2014 Appl. Surf. Sci. 317 11Google Scholar

    [21]

    Mei Y, Fan D, Lu S, Shen Y, Hu X 2016 J. Appl. Phys. 120 225107Google Scholar

    [22]

    Nimmagadda R R, Joshi A, Hsu W L 1990 J. Mater. Res. 5 2445Google Scholar

    [23]

    Obraztsov A N, Kopylov P G, Chuvilin A L, Savenko N V 2009 Diamond Relat. Mater. 18 1289Google Scholar

    [24]

    Zolotukhin A, Kopylov P G, Ismagilov R R, Obraztsov A N 2010 Diamond Relat. Mater. 19 1007Google Scholar

    [25]

    Hei L F, Zhao Y, Wei J J, Liu J L, Li C M, Lü F X 2017 Int. J. Miner. Metall. Mater. 24 1424Google Scholar

    [26]

    Mildren R P, Butler J E, Rabeau J R 2008 Opt. Express 16 18950Google Scholar

    [27]

    Reilly S, Savitski V G, Liu H, Gu E, Dawson M D, Kemp A J 2015 Opt. Lett. 40 930Google Scholar

    [28]

    Hu X J, Li N 2013 Chin. Phys. Lett. 30 088102Google Scholar

    [29]

    Dychalska A, Fabisiak K, Paprocki K, Makowiecki J, Iskaliyeva A, Szybowicz M 2016 Mater. Des. 112 320Google Scholar

    [30]

    Prawer S, Nugent K W, Jamieson D N, Orwa J O, Bursill L A, Peng J L 2000 Chem. Phys. Lett. 332 93Google Scholar

    [31]

    Prawer S, Nemanich R J 2004 Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362 2537Google Scholar

    [32]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [33]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [34]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405Google Scholar

    [35]

    Ferrari A C, Robertson J 2004 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 362 2477Google Scholar

    [36]

    Fecher J, Wormser M, Rosiwal S M 2016 Diamond Relat. Mater. 61 41Google Scholar

    [37]

    Sails S R, Gardiner D J, Bowden M, Savage J, Rodway D 1996 Diamond Relat. Mater. 5 589Google Scholar

  • 图 1  单颗粒层纳米晶金刚石薄膜的表面形貌 (a) OX-0; (b) OX-0; (c) OX-30; (d) OX-30; (e) OX-40; (f) OX-40; (g) OX-130; (h) OX-130; (i) OX-140; (j) OX-140

    Fig. 1.  Morphology of separated domains formed nanocrystalline diamond film: (a) OX-0; (b) OX-0; (c) OX-30; (d) OX-30; (e) OX-40; (f) OX-40; (g) OX-130; (h) OX-130; (i) OX-140; (j) OX-140.

    图 2  (a) 572 nm处的金刚石的一阶斯托克斯线; (b)单颗粒层纳米晶金刚石薄膜的硅空位光致发光谱; (c) 738 nm波长强度与572 nm强度比值随时间变化

    Fig. 2.  (a) Diamond first Stokes line at 572 nm; (b) SiV photoluminescence spectra of separated domains formed nanocrystalline diamond film; (c) photoluminescence intensity ratio of 738 nm emission and 572 nm emission with different oxidation time.

    图 3  单颗粒层纳米晶金刚石薄膜的硅空位光致发光mapping (a) OX-0; (b) OX-30; (c) OX-40; (d) OX-60; (e) OX-130; (f) OX-140

    Fig. 3.  SiV photoluminescence mapping of separated domains formed nanocrystalline diamond film: (a) OX-0; (b) OX-30; (c) OX-40; (d) OX-60; (e) OX-130; (f). OX-140.

    图 4  单颗粒层纳米晶金刚石薄膜的硅空位光致发光强度及半峰宽

    Fig. 4.  SiV photoluminescence intensity and full width at half maximum (FWHM) values.

    图 5  (a)不同氧化时间单颗粒层纳米晶金刚石薄膜的拉曼光谱; (b)金刚石含量与It-PA/ISUM和样品氧化时间的关系; (c)金刚石峰位置与半峰宽随氧化时间的变化关系

    Fig. 5.  (a) Raman spectra of variety time oxidized separated domains formed nanocrystalline diamond film; (b) diamond content and It-PA/ISUM of films with their oxidation time; (c) diamond peak position and FWHM values of films with their oxidation time.

  • [1]

    Aharonovich I, Englund D, Toth M 2016 Nat. Photon. 10 631Google Scholar

    [2]

    Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D, Prawer S 2011 Rep. Prog. Phys. 740 076501

    [3]

    Aharonovich I, Neu E 2014 Adv. Opt. Mater. 2 911Google Scholar

    [4]

    Schröder T, Mouradian S L, Zheng J, Trusheim M E, Walsh M, Chen E H, Li L, Bayn I, Englund D 2016 J. Opt. Soc. Am. B 33 B65Google Scholar

    [5]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [6]

    Muller T, Hepp C, Pingault B, Neu E, Gsell S, Schreck M, Sternschulte H, Steinmuller-Nethl D, Becher C, Atature M 2014 Nat. Commun. 5 3328Google Scholar

    [7]

    Merson T D, Castelletto S, Aharonovich I, Turbic A, Kilpatrick T J, Turnley A M 2013 Opt. Lett. 38 4170Google Scholar

    [8]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [9]

    Aharonovich I 2014 Nat. Photon. 8 818Google Scholar

    [10]

    Jelezko F, Wrachtrup J 2006 Phys. Status Solidi A 203 3207Google Scholar

    [11]

    Rogers L J, Jahnke K D, Teraji T, Marseglia L, Muller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4739Google Scholar

    [12]

    Neu E, Albrecht R, Fischer M, Gsell S, Schreck M, Becher C 2012 Phys. Rev. B 85 245207Google Scholar

    [13]

    Dragounová K, Ižák T, Kromka A, Potůček Z, Bryknar Z, Potocký Š 2018 Appl. Phys. A 124 219

    [14]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl. Phys. 109 053524Google Scholar

    [15]

    Klauser F, Steinmüller-Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vapor Depos. 16 127Google Scholar

    [16]

    Lin S C, Yeh C J, Kurian J, Dong C L, Niu H, Leou K C, Lin I N 2014 J. Appl. Phys. 116 183701Google Scholar

    [17]

    Wilson J I B, Walton J S, Beamson G 2001 J. Electron Spectrosc. Relat. Phenom. 121 183Google Scholar

    [18]

    Osswald S, Yushin G, Mochalin V, Kucheyev S O, Gogotsi Y 2006 J. Am. Chem. Soc. 128 11635Google Scholar

    [19]

    Pu J C, Wang S F, Sung J C 2010 J. Alloy. Compd. 489 638Google Scholar

    [20]

    Huang K, Hu X, Xu H, Shen Y, Khomich A 2014 Appl. Surf. Sci. 317 11Google Scholar

    [21]

    Mei Y, Fan D, Lu S, Shen Y, Hu X 2016 J. Appl. Phys. 120 225107Google Scholar

    [22]

    Nimmagadda R R, Joshi A, Hsu W L 1990 J. Mater. Res. 5 2445Google Scholar

    [23]

    Obraztsov A N, Kopylov P G, Chuvilin A L, Savenko N V 2009 Diamond Relat. Mater. 18 1289Google Scholar

    [24]

    Zolotukhin A, Kopylov P G, Ismagilov R R, Obraztsov A N 2010 Diamond Relat. Mater. 19 1007Google Scholar

    [25]

    Hei L F, Zhao Y, Wei J J, Liu J L, Li C M, Lü F X 2017 Int. J. Miner. Metall. Mater. 24 1424Google Scholar

    [26]

    Mildren R P, Butler J E, Rabeau J R 2008 Opt. Express 16 18950Google Scholar

    [27]

    Reilly S, Savitski V G, Liu H, Gu E, Dawson M D, Kemp A J 2015 Opt. Lett. 40 930Google Scholar

    [28]

    Hu X J, Li N 2013 Chin. Phys. Lett. 30 088102Google Scholar

    [29]

    Dychalska A, Fabisiak K, Paprocki K, Makowiecki J, Iskaliyeva A, Szybowicz M 2016 Mater. Des. 112 320Google Scholar

    [30]

    Prawer S, Nugent K W, Jamieson D N, Orwa J O, Bursill L A, Peng J L 2000 Chem. Phys. Lett. 332 93Google Scholar

    [31]

    Prawer S, Nemanich R J 2004 Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362 2537Google Scholar

    [32]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [33]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [34]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405Google Scholar

    [35]

    Ferrari A C, Robertson J 2004 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 362 2477Google Scholar

    [36]

    Fecher J, Wormser M, Rosiwal S M 2016 Diamond Relat. Mater. 61 41Google Scholar

    [37]

    Sails S R, Gardiner D J, Bowden M, Savage J, Rodway D 1996 Diamond Relat. Mater. 5 589Google Scholar

  • [1] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控. 物理学报, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [2] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [3] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [4] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [5] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [6] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [7] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [8] 王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生. 金刚石中GR1中心的光致发光特性研究. 物理学报, 2013, 62(6): 067802. doi: 10.7498/aps.62.067802
    [9] 王凯悦, 李志宏, 张博, 朱玉梅. 光致发光光谱研究金刚石光学中心的振动结构. 物理学报, 2012, 61(12): 127804. doi: 10.7498/aps.61.127804
    [10] 王凯悦, 李志宏, 高凯, 朱玉梅. 电子辐照金刚石的光致发光研究. 物理学报, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [11] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [12] 缪竞威, 王培禄, 朱洲森, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 孙威立, 张 静, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究. 物理学报, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [13] 姚志涛, 孙新瑞, 许海军, 姜卫粉, 肖顺华, 李新建. 氧化锌/硅纳米孔柱阵列的结构和光致发光特性研究. 物理学报, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [14] 马忠元, 黄信凡, 朱 达, 李 伟, 陈坤基, 冯 端. 原位等离子体逐层氧化a-Si:H/SiO2多层膜的光致发光研究. 物理学报, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [15] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为. 物理学报, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [16] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [17] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [18] 袁放成, 冉广照, 陈源, 张伯蕊, 乔永平, 傅济时, 秦国刚, 马振昌, 宗婉华. 磁控溅射淀积掺Er富Si氧化硅膜中Er3+ 1.54μm光致发光. 物理学报, 2001, 50(12): 2487-2491. doi: 10.7498/aps.50.2487
    [19] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究. 物理学报, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
    [20] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
计量
  • 文章访问数:  7958
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 修回日期:  2019-06-10
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回