搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳离子注入金刚石制备氮空位色心的机理

何健 贾燕伟 屠菊萍 夏天 朱肖华 黄珂 安康 刘金龙 陈良贤 魏俊俊 李成明

引用本文:
Citation:

碳离子注入金刚石制备氮空位色心的机理

何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明

Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation

He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming
PDF
HTML
导出引用
  • 金刚石中浅表层氮空位色心在磁探测、量子传感等方面表现出优异的灵敏度和分辨率. 相比于其他制备方法, 低能碳离子注入具有要求金刚石纯度低、不引入新的杂质原子等优点, 但其氮空位色心的形成机理尚不明确. 本文采用低能碳离子注入和真空退火工艺在金刚石浅表层创建氮空位色心, 并通过拉曼光谱、X射线光电子能谱以及正电子湮没分析, 揭示了碳离子注入金刚石制备氮空位色心的机理. 结果表明: 碳离子注入金刚石在950 ℃真空退火后呈现出显著的氮空位色心发光. 碳离子注入后金刚石浅表层表现出晶格畸变与非晶碳的损伤区, 并产生了碳-空位簇缺陷(包裹碳原子的空位簇). 在真空退火过程中损伤区通过畸变区的恢复与非晶碳区的固相外延逐步转变为金刚石结构, 并伴随着碳-空位簇缺陷的不断解离. 在850 ℃和900 ℃退火条件下损伤区结构得到部分修复, 而在950 ℃ 退火时损伤层基本恢复, 同时伴随碳空位簇解离的单空位与代位氮原子结合, 形成了氮空位色心.
    The shallow nitrogen-vacancy center of diamond exhibits excellent sensitivity and resolution in the magnetic detection and quantum sensing areas. Compared with other methods, low-energy carbon ion implantation does not need high-purity diamond nor introduce new impurity atoms, but the formation mechanism of nitrogen-vacancy center is not clear. In this work, shallow nitrogen-vacancy centers are created in the diamond by low energy carbon ion implantation and vacuum annealing, and the transformation mechanism of nitrogen-vacancy centers in diamond is studied by Raman spectroscopy, X-ray photoelectron spectroscopy, and positron annihilation analysis. The results show that shallow nitrogen-vacancy centers can be obtained by carbon ion implantation combined with vacuum annealing. After implantation, superficial layer of diamond shows the damage zone including lattice distortion and amorphous carbon, and carbon-vacancy cluster defects (carbon atoms are surrounded by vacancy clusters) are generated. In the vacuum annealing process, the damaged area gradually transforms into the diamond structure through the recovery of the distortion area and the solid-phase epitaxy of the amorphous carbon area, accompanied by the continuous dissociation of carbon-vacancy cluster defects. When samples are annealed at 850 and 900 ℃, the structure of the damaged area is partially repaired. While annealing at 950 ℃, not only the damaged layer is basically recovered, but also nitrogen atoms capture the single vacancy obtained by the dissociation of carbon vacancy clusters, forming the nitrogen-vacancy centers.
      通信作者: 刘金龙, liujinlong@ustb.edu.cn ; 李成明, chengmli@mater.ustb.edu.cn
    • 基金项目: 国家磁约束核聚变发展研究专项资助(批准号: 2019YFE03100200)、北京自然科学基金(批准号: 4192038)和核探测与核电子学国家重点实验室项目(批准号: SKLPDE-KF-202202)资助的课题.
      Corresponding author: Liu Jin-Long, liujinlong@ustb.edu.cn ; Li Cheng-Ming, chengmli@mater.ustb.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2019YFE03100200), the Natural Science Foundation of Beijing, China (Grant No. 4192038), and the State Key Laboratory of Particle Detection and Electronics Program of China (Grant No. SKLPDE-KF-202202).
    [1]

    Solyom A, Flansberry Z, Tschudin M A, Leitao N, Pioro-Ladrière M, Sankey J C, Childress L I 2018 Nano Lett. 18 6494Google Scholar

    [2]

    Casola F, Van Der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088Google Scholar

    [3]

    Feng F, Zhang W, Zhang J, Lou L, Zhu W, Wang G 2019 Eur. Phys. J. 73 202Google Scholar

    [4]

    Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar

    [5]

    Chen M, Meng C, Zhang Q, Duan C, Shi F, Du J 2018 Natl. Sci. Rev. 5 346Google Scholar

    [6]

    Schmitt S, Gefen T, Stürner F M, Unden T, Wolff G, Müller C, Scheuer J, Naydenov B, Markham M, Pezzagna S, Meijer J 2017 Science 356 832Google Scholar

    [7]

    Barbiero M, Castelletto S, Zhang Q, Chen Y, Charnley M, Russell S, Gu M 2020 Nanoscale 12 8847Google Scholar

    [8]

    Ninio Y, Waiskopf N, Meirzada I, Romach Y, Haim G, Yochelis S, Banin U, Bar-Gill N 2021 ACS Photonics 8 1917Google Scholar

    [9]

    Perona Martínez F, Nusantara A C, Chipaux M, Padamati S K, Schirhagl R 2020 ACS Sensors 5 3862Google Scholar

    [10]

    Zhang C, Yuan H, Zhang N, Xu L X, Li B, Cheng G D, Wang Y, Gui Q, Fang J C 2017 J. Phys. D: Appl. Phys. 50 505104Google Scholar

    [11]

    Watanabe A, Nishikawa T, Kato H, Fujie M, Fujiwara M, Makino T, Yamasaki S, Herbschleb E D, Mizuochi N 2021 Carbon 30 294Google Scholar

    [12]

    Ishiwata H, Nakajima M, Tahara K, Ozawa H, Iwasaki T, Hatano M 2017 Appl. Phys. Lett. 24 043103Google Scholar

    [13]

    Momenzadeh S A, Stohr R J, De Oliveira F F, Brunner A, Denisenko A, Yang S, Reinhard F, Wrachtrup J 2015 Nano Lett. 15 165Google Scholar

    [14]

    Bourgeois E, Londero E, Buczak K, Hruby J, Gulka M, Balasubramaniam Y, Wachter G, Stursa J, Dobes K, Aumayr F, Trupke M 2017 Phys. Rev. B 95 041402Google Scholar

    [15]

    Monticone D G, Quercioli F, Mercatelli R, Soria S, Borini S, Poli T, Vannoni M, Vittone E, Olivero P 2013 Phys. Rev. B 88 155201Google Scholar

    [16]

    Waldermann F C, Olivero P, Nunn J, Surmacz K, Wang Z Y, Jaksch D, Taylor R A, Walmsley I A, Draganski M, Reichart P, Greentree A D 2007 Diamond Relat. Mater. 16 1887Google Scholar

    [17]

    Sumikura H, Hirama K, Nishiguchi K, Shinya A, Notomi M 2020 APL Mater. 8 031113Google Scholar

    [18]

    Van Dam S B, Walsh M, Degen M J, Bersin E, Mouradian S L, Galiullin A, Ruf M, IJspeert M, Taminiau T H, Hanson R, Englund D R 2019 Phys. Rev. B 99 161203Google Scholar

    [19]

    Orwa J O, Santori C, Fu K M, Gibson B, Simpson D, Aharonovich I, Stacey A, Cimmino A, Balog P, Markham M, Twitchen D 2011 J. Appl. Phys. 109 083530Google Scholar

    [20]

    Popov V P, Podlesny S N, Kartashov I A, Kupriyanov I N, Palyanov Y N 2021 Diamond Relat. Mater. 120 108675Google Scholar

    [21]

    Ohno K, Joseph Heremans F, de las Casas C F, Myers B A, Alemán B J, Bleszynski Jayich A C, Awschalom D D 2014 Appl. Phys. Lett. 105 052406Google Scholar

    [22]

    Healey A J, Stacey A, Johnson B C, Broadway D A, Teraji T, Simpson D A, Tetienne J P, Hollenberg L C 2020 Phys. Rev. Mater. 4 104605Google Scholar

    [23]

    Woods, G S, Van Wyk J A, Collins A T 1990 Philos. Mag. 62 589

    [24]

    吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond Abrasives Eng. 40 42Google Scholar

    [25]

    张礼红, 成斌, 张杰, 张丽娟, 郭卫峰, 刘建党, 张礼楠, 叶邦角 2021 中国科学: 物理学 力学 天文学 42 1217Google Scholar

    Zhang L H, Cheng B, Zhang J, Zhang L J, Guo W F, Liu J D, Zhang L N, Ye B J 2021 Sci. Chin. Sin. :Phys. , Mech. Astron. 42 1217Google Scholar

    [26]

    张鹏, 秦秀波, 于润升, 李玉晓, 曹兴忠, 王宝义 2012 郑州大学学报 44 5Google Scholar

    Zhang P, Qin X B, Yu R S, Li Y X, Cao X Z, Wang B Y 2012 J. Zhengzhou Univ. 44 5Google Scholar

    [27]

    郑贤利, 张泊丽, 刘敏, 夏艳芳, 赵修良, 赵越, 宁晓波 2016 材料导报 30 184

    Zheng X L, Zhang B L, Liu M, Xia Y F, Zhao X L, Zhao Y, Ning X B 2016 Mater. Rep. 30 184

    [28]

    Crocombette J P, Van Wambeke C 2019 EPJ Nucl. Sci. Technol. 5 9Google Scholar

    [29]

    Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomich A V 2019 J. Appl. Spectrosc. 86 597Google Scholar

    [30]

    Uedono A, Ujihira Y, Ikari A, Haga H, Yoda O 1993 Hyperfine Interacts. 79 615Google Scholar

    [31]

    Uedono A, Wei L, Tanigawa S, Suzuki R, Ohgaki H, Mikado T, Kametani H, Akiyama H, Yamaguchi Y, Koumaru M 1993 Jpn. J. Appl. Phys. 32 3682Google Scholar

    [32]

    Uedono A, Kitano T, Watanabe M, Moriya T, Komuro N, Kawano T, Tanigawa S, Suzuki R, Ohdaira T, Mikado T 1997 Jpn. J. Appl. Phys. 36 969Google Scholar

    [33]

    王锐, 胡晓君 2014 物理学报 63 148102Google Scholar

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102Google Scholar

    [34]

    Uedono A, Mori K, Morishita N, Itoh H, Tanigawa S, Fujii S, Shikata S 1999 J. Phys. Condens. Matter 11 4925Google Scholar

    [35]

    Guagliardo P, Byrne K, Chapman J, Sudarshan K, Samarin S, Williams J 2013 Diamond Relat. Mater. 37 37Google Scholar

    [36]

    王凯悦, 郭睿昂, 王宏兴 2020 物理学报 69 127802Google Scholar

    Wang K Y, Guo R A, Wang H X 2020 Acta Phys. Sin. 69 127802Google Scholar

    [37]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [38]

    田雪芬, 刘翔, 龚敏, 张培源, 王康, 邓爱红 2021 金属学报 57 121Google Scholar

    Tian X F, Liu X, Gong M, Zhang P Y, Wang K, Deng A H 2021 Acta Metall. Sin. 57 121Google Scholar

    [39]

    Selim F A 2021 Mater Charact. 174 110952Google Scholar

    [40]

    Siemek K, Dryzek J, Mitura-Nowak M, Lomygin A, Schabikowski M 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 465 73Google Scholar

    [41]

    Agulló-Rueda F, Gordillo N, Ynsa M D, Maira A, Cañas J, Ramos M A 2017 Carbon 123 334Google Scholar

  • 图 1  碳离子注入金刚石的深度及损伤的SRIM模拟

    Fig. 1.  SRIM simulation of depth and damage of carbon ion implantation in diamond.

    图 2  金刚石在碳离子注入前后的拉曼光谱及 PL 光谱 (a) 原始金刚石拉曼光谱; (b) 原始金刚石的PL光谱; (c) 碳离子注入后金刚石的拉曼光谱; (d) 碳离子注入后金刚石的PL光谱

    Fig. 2.  Raman spectra and PL spectra of the sample before and after implantation: (a) Raman spectrum of original sample; (b) PL spectrum of original sample; (c) Raman spectra of sample after implantation; (d) PL spectrum of sample after implantation.

    图 3  (a) 不同温度退火后金刚石表面的拉曼光谱; (b) 不同温度退火后金刚石表面的PL光谱

    Fig. 3.  (a) Raman spectra of diamond surfaces after annealing at different temperatures; (b) PL spectra of diamond surfaces after annealing at different temperatures.

    图 4  离子注入后金刚石的XPS图谱及其退火后的XPS图谱 (a) 注入金刚石的XPS谱; (b) S1 (850 ℃)退火金刚石的XPS谱; (c) S2 (900 ℃)金刚石的XPS谱; (d) S3 (950 ℃)金刚石的XPS谱

    Fig. 4.  XPS spectra of samples after ion implantation and its XPS spectra after annealing: (a) XPS spectra of implanted sample; (b) XPS spectra of the sample annealed at 850 ℃; (c) XPS spectra of the sample annealed at 900 ℃; (d) XPS spectra of the sample annealed at 950 ℃.

    图 5  金刚石碳离子注入及退火后多普勒展宽谱 (a) 金刚石碳离子注入及退火后S-E分布曲线; (b) 金刚石碳离子注入及退火后W-E分布曲线

    Fig. 5.  Doppler broadening spectra after diamond carbon ion implantation and annealing: (a) S-E curves after carbon ion implantation and annealing; (b) W-E curves after carbon ion implantation and annealing.

    图 6  金刚石碳离子注入及退火后W-S参数变化

    Fig. 6.  Changes of W-S parameters after diamond carbon ion implantation and annealing.

    表 1  XPS谱的拟合结果

    Table 1.  Fitting results of XPS spectra.

    Samples
    C-ionsS1(850 ℃)S2(900 ℃)S3(950 ℃)
    μ(sp2)91.5%53.5%25.3%13.6%
    μ(sp3)8.5%46.5%74.7%86.4%
    下载: 导出CSV
  • [1]

    Solyom A, Flansberry Z, Tschudin M A, Leitao N, Pioro-Ladrière M, Sankey J C, Childress L I 2018 Nano Lett. 18 6494Google Scholar

    [2]

    Casola F, Van Der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088Google Scholar

    [3]

    Feng F, Zhang W, Zhang J, Lou L, Zhu W, Wang G 2019 Eur. Phys. J. 73 202Google Scholar

    [4]

    Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar

    [5]

    Chen M, Meng C, Zhang Q, Duan C, Shi F, Du J 2018 Natl. Sci. Rev. 5 346Google Scholar

    [6]

    Schmitt S, Gefen T, Stürner F M, Unden T, Wolff G, Müller C, Scheuer J, Naydenov B, Markham M, Pezzagna S, Meijer J 2017 Science 356 832Google Scholar

    [7]

    Barbiero M, Castelletto S, Zhang Q, Chen Y, Charnley M, Russell S, Gu M 2020 Nanoscale 12 8847Google Scholar

    [8]

    Ninio Y, Waiskopf N, Meirzada I, Romach Y, Haim G, Yochelis S, Banin U, Bar-Gill N 2021 ACS Photonics 8 1917Google Scholar

    [9]

    Perona Martínez F, Nusantara A C, Chipaux M, Padamati S K, Schirhagl R 2020 ACS Sensors 5 3862Google Scholar

    [10]

    Zhang C, Yuan H, Zhang N, Xu L X, Li B, Cheng G D, Wang Y, Gui Q, Fang J C 2017 J. Phys. D: Appl. Phys. 50 505104Google Scholar

    [11]

    Watanabe A, Nishikawa T, Kato H, Fujie M, Fujiwara M, Makino T, Yamasaki S, Herbschleb E D, Mizuochi N 2021 Carbon 30 294Google Scholar

    [12]

    Ishiwata H, Nakajima M, Tahara K, Ozawa H, Iwasaki T, Hatano M 2017 Appl. Phys. Lett. 24 043103Google Scholar

    [13]

    Momenzadeh S A, Stohr R J, De Oliveira F F, Brunner A, Denisenko A, Yang S, Reinhard F, Wrachtrup J 2015 Nano Lett. 15 165Google Scholar

    [14]

    Bourgeois E, Londero E, Buczak K, Hruby J, Gulka M, Balasubramaniam Y, Wachter G, Stursa J, Dobes K, Aumayr F, Trupke M 2017 Phys. Rev. B 95 041402Google Scholar

    [15]

    Monticone D G, Quercioli F, Mercatelli R, Soria S, Borini S, Poli T, Vannoni M, Vittone E, Olivero P 2013 Phys. Rev. B 88 155201Google Scholar

    [16]

    Waldermann F C, Olivero P, Nunn J, Surmacz K, Wang Z Y, Jaksch D, Taylor R A, Walmsley I A, Draganski M, Reichart P, Greentree A D 2007 Diamond Relat. Mater. 16 1887Google Scholar

    [17]

    Sumikura H, Hirama K, Nishiguchi K, Shinya A, Notomi M 2020 APL Mater. 8 031113Google Scholar

    [18]

    Van Dam S B, Walsh M, Degen M J, Bersin E, Mouradian S L, Galiullin A, Ruf M, IJspeert M, Taminiau T H, Hanson R, Englund D R 2019 Phys. Rev. B 99 161203Google Scholar

    [19]

    Orwa J O, Santori C, Fu K M, Gibson B, Simpson D, Aharonovich I, Stacey A, Cimmino A, Balog P, Markham M, Twitchen D 2011 J. Appl. Phys. 109 083530Google Scholar

    [20]

    Popov V P, Podlesny S N, Kartashov I A, Kupriyanov I N, Palyanov Y N 2021 Diamond Relat. Mater. 120 108675Google Scholar

    [21]

    Ohno K, Joseph Heremans F, de las Casas C F, Myers B A, Alemán B J, Bleszynski Jayich A C, Awschalom D D 2014 Appl. Phys. Lett. 105 052406Google Scholar

    [22]

    Healey A J, Stacey A, Johnson B C, Broadway D A, Teraji T, Simpson D A, Tetienne J P, Hollenberg L C 2020 Phys. Rev. Mater. 4 104605Google Scholar

    [23]

    Woods, G S, Van Wyk J A, Collins A T 1990 Philos. Mag. 62 589

    [24]

    吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond Abrasives Eng. 40 42Google Scholar

    [25]

    张礼红, 成斌, 张杰, 张丽娟, 郭卫峰, 刘建党, 张礼楠, 叶邦角 2021 中国科学: 物理学 力学 天文学 42 1217Google Scholar

    Zhang L H, Cheng B, Zhang J, Zhang L J, Guo W F, Liu J D, Zhang L N, Ye B J 2021 Sci. Chin. Sin. :Phys. , Mech. Astron. 42 1217Google Scholar

    [26]

    张鹏, 秦秀波, 于润升, 李玉晓, 曹兴忠, 王宝义 2012 郑州大学学报 44 5Google Scholar

    Zhang P, Qin X B, Yu R S, Li Y X, Cao X Z, Wang B Y 2012 J. Zhengzhou Univ. 44 5Google Scholar

    [27]

    郑贤利, 张泊丽, 刘敏, 夏艳芳, 赵修良, 赵越, 宁晓波 2016 材料导报 30 184

    Zheng X L, Zhang B L, Liu M, Xia Y F, Zhao X L, Zhao Y, Ning X B 2016 Mater. Rep. 30 184

    [28]

    Crocombette J P, Van Wambeke C 2019 EPJ Nucl. Sci. Technol. 5 9Google Scholar

    [29]

    Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomich A V 2019 J. Appl. Spectrosc. 86 597Google Scholar

    [30]

    Uedono A, Ujihira Y, Ikari A, Haga H, Yoda O 1993 Hyperfine Interacts. 79 615Google Scholar

    [31]

    Uedono A, Wei L, Tanigawa S, Suzuki R, Ohgaki H, Mikado T, Kametani H, Akiyama H, Yamaguchi Y, Koumaru M 1993 Jpn. J. Appl. Phys. 32 3682Google Scholar

    [32]

    Uedono A, Kitano T, Watanabe M, Moriya T, Komuro N, Kawano T, Tanigawa S, Suzuki R, Ohdaira T, Mikado T 1997 Jpn. J. Appl. Phys. 36 969Google Scholar

    [33]

    王锐, 胡晓君 2014 物理学报 63 148102Google Scholar

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102Google Scholar

    [34]

    Uedono A, Mori K, Morishita N, Itoh H, Tanigawa S, Fujii S, Shikata S 1999 J. Phys. Condens. Matter 11 4925Google Scholar

    [35]

    Guagliardo P, Byrne K, Chapman J, Sudarshan K, Samarin S, Williams J 2013 Diamond Relat. Mater. 37 37Google Scholar

    [36]

    王凯悦, 郭睿昂, 王宏兴 2020 物理学报 69 127802Google Scholar

    Wang K Y, Guo R A, Wang H X 2020 Acta Phys. Sin. 69 127802Google Scholar

    [37]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [38]

    田雪芬, 刘翔, 龚敏, 张培源, 王康, 邓爱红 2021 金属学报 57 121Google Scholar

    Tian X F, Liu X, Gong M, Zhang P Y, Wang K, Deng A H 2021 Acta Metall. Sin. 57 121Google Scholar

    [39]

    Selim F A 2021 Mater Charact. 174 110952Google Scholar

    [40]

    Siemek K, Dryzek J, Mitura-Nowak M, Lomygin A, Schabikowski M 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 465 73Google Scholar

    [41]

    Agulló-Rueda F, Gordillo N, Ynsa M D, Maira A, Cañas J, Ramos M A 2017 Carbon 123 334Google Scholar

  • [1] 赵永生, 阎峰云, 刘雪. 掺杂B, Cr, Mo, Ti, W, Zr后金刚石中正电子湮灭寿命计算. 物理学报, 2024, 73(1): 017802. doi: 10.7498/aps.73.20231269
    [2] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控. 物理学报, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [3] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [4] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [5] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [6] 冯园耀, 李中豪, 张扬, 崔凌霄, 郭琦, 郭浩, 温焕飞, 刘文耀, 唐军, 刘俊. 固态金刚石氮空位色心光学调控优化. 物理学报, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [7] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [8] 宋青, 权伟龙, 冯田均, 俄燕. CH基团与金刚石(111)面的碰撞反应及其对碳膜生长的影响. 物理学报, 2016, 65(3): 030701. doi: 10.7498/aps.65.030701
    [9] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [10] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征. 物理学报, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [12] 田玉明, 王凯悦, 李志宏, 朱玉梅, 柴跃生, 曾雨顺, 王强. 高能电子照射对金刚石中缺陷电荷状态的影响. 物理学报, 2013, 62(18): 188101. doi: 10.7498/aps.62.188101
    [13] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [14] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [15] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [16] 王凯悦, 李志宏, 高凯, 朱玉梅. 电子辐照金刚石的光致发光研究. 物理学报, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [17] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [18] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 微波等离子体化学气相沉积合成掺氮金刚石薄膜的缺陷和结构特征及其生长行为. 物理学报, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [19] 李荣斌. 硼/氮原子共注入金刚石的原子级研究. 物理学报, 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [20] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
计量
  • 文章访问数:  4021
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 修回日期:  2022-05-09
  • 上网日期:  2022-09-07
  • 刊出日期:  2022-09-20

/

返回文章
返回