-
在金刚石氮空位色心的高灵敏传感探测研究中, 光学调控是氮空位色心实现高效光学初态制备及信息提取的关键. 本文基于高浓度的金刚石氮空位色心系综检测展开, 采用脉冲光学探测磁共振技术, 系统地研究了激光初态极化时间、信息读取时间与激光功率的关联特性, 并进一步研究了激光入射偏振角与传感信息精度的关系. 探究了各个激光参数对高浓度金刚石氮空位色心系综[111]轴上光学探测磁共振谱中第一个共振峰的影响, 并通过实验结果进行分析, 最终选取在光功率密度为45.8 W/cm2下的最优实验参数(300 μs的极化时间, 700 ns的读取时间, 激光入射角为220°)进行了光学磁探测共振测试, 与优化前的实验参数(极化时间为50 μs, 读取时间为3000 ns, 入射角度为250°)相比, 典型的磁检测灵敏度由21.6 nT/Hz1/2提升到5.6 nT/Hz1/2. 以上研究结果表明我们已经实现光学精密调控的优化测量, 这些研究结果也为高浓度氮空位色心系综精密调控实现温度和生物成像、量子计算及量子信息等领域调控传感检测提供了有效参考.The nitrogen-vacancy (NV) centers in diamond have the advantages of stable triaxial structure, ultra-long electron spin coherence time and simple optical readout at room temperature. A nitrogen atom in the diamond crystal replaces a carbon atom and a vacancy is generated at the adjacent position, forming a point defect in the C3v space group structure. Its ground state and excited state are both spin triplet states. It is the key to achieving efficient preparation of optical initial state and extracting NV color center’s information in the researches of highly sensitive sensing magnetic detection, temperature detection, biological imaging, quantum computing, etc. However, there was no systematic study on relevant parameters of laser for high-concentration NV color center’s samples in previous experimental studies. Based on a high concentration diamond NV ensemble, we use pulsed optical detection magnetic resonance (ODMR) technology to systematically study the relationship among laser initial polarization time, information reading time and laser power, and the influence of laser incident polarization angle on the accuracy of sensing information. The effects of various laser parameters on the NV1 peak of ODMR on the [111] axis of the NVs of diamond are also investigated. The contrast of ODMR increases firstly with a sigmoid function and then decreases with an e-exponential function as the information reading time increases. The incident polarization angle of the laser is sinusoidal, with a period of 90°. According to the above experimental results, we finally choose the appropriate experimental parameters at 45.8 W/cm2 (300 μs of polarization, 700 ns, reading time, laser incident angle is 220°) for ODMR test. Compared with previous experimental parameters (polarization time was 50 us, read the time of 3000 ns, laser incident angle was 250°), the experimental results show that the contrast of ODMR increases from 2.1% to 4.6%, and the typical magnetic sensitivity is improved from 21.6 nT/Hz1/2 to 5.6 nT/Hz1/2. The optimization of the optical control of NVs in solid diamond is realized. The above results provide an effective support for the detection of high-sensitivity manipulation sensing based on high-concentration NV ensemble.
[1] Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar
[2] Suter D, Jelezko F 2017 Prog. Nucl. Magn. Reson. Spectrosc. 98-99 50Google Scholar
[3] Zhang C, Yuan H, Zhang N, Xu L, Zhang J, Li B, Fang J 2018 J. Phys. D: Appl. Phys. 51 155102Google Scholar
[4] Luo M X, Li H R, Lai H, Wang X 2016 Sci. Rep. 6 25977Google Scholar
[5] Balasubramanian G, Lazariev A, Arumugam S R, Duan D 2014 Curr. Opin. Chem. Biol. 20 69Google Scholar
[6] Doherty M W, Acosta V M, Jarmola A, Barson M S J, Hollenberg L C L 2013 Phys. Rev. B 90 12Google Scholar
[7] Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar
[8] Rendler T, Neburkova J, Zemek O, Kotek J, Zappe A, Chu Z, Cigler P, Wrachtrup J 2017 Nat. Commun. 8 14701Google Scholar
[9] Yang Z, Kong X, Li Z, Yang K, Yu P, Wang P, Wang Y, Qin X, Rong X, Duan C K, Shi F, Du J 2020 Adv. Quantum. Technol. 3 1900136Google Scholar
[10] Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F, Jacques V 2011 Phys. Rev. B 84 195204Google Scholar
[11] Yavkin B V, Soltamov V A, Babunts R A, Anisimov A N, Baranov P G, Shakhov F M, Kidalov S V, Vul' A Y, Mamin G V, Orlinskii S B 2014 Appl. Magn. Reson. 45 1035Google Scholar
[12] Robledo L, Bernien H, van Weperen I, Hanson R 2010 Phys. Rev. Lett. 105 177403Google Scholar
[13] Wang F, Zu C, He L, Wang W B, Zhang W G, Duan L M 2016 Phys. Rev. B 94 064304Google Scholar
[14] Xu L, Yuan H, Zhang N, Zhang J, Bian G, Fan P, Li M, Zhang C, Zhai Y, Fang J 2019 Opt. Express 27 10787Google Scholar
[15] Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2013 Nat. Phys. 10 21Google Scholar
[16] Poggiali F, Cappellaro P, Fabbri N 2017 Phys. Rev. B 95 195308Google Scholar
[17] Giri R, Gorrini F, Dorigoni C, Avalos C E, Cazzanelli M, Tambalo S, Bifone A 2018 Phys. Rev. B 98 045401Google Scholar
[18] Robledo L, Bernien H, Sar T v d, Hanson R 2011 New J. Phys. 13 025013Google Scholar
[19] Chakraborty T, Zhang J, Suter D 2017 New J. Phys. 19 073030Google Scholar
[20] Fu K M C, Santori C, Barclay P E, Beausoleil R G 2010 Appl. Phys. Lett. 96 121907Google Scholar
[21] Bluvstein D, Zhang Z, Jayich A C B 2019 Phys. Rev. Lett. 122 076101Google Scholar
[22] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar
Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar
[23] Zhang N, Zhang C, Xu L, Ding M, Quan W, Tang Z, Yuan H 2016 Appl. Magn. Reson. 47 589Google Scholar
[24] Ma Y, Rohlfing M, Gali A 2010 Phys. Rev. B 81 041204Google Scholar
[25] Zhu Q, Guo H, Chen Y, Wu D, Zhao B, Wang L, Zhang Y, Zhao R, Du F, Tang J, Liu J 2018 Jpn. J. Appl. Phys. 57 110309Google Scholar
[26] 宁伟光, 张扬, 李中豪, 唐军 2019 量子光学学报 25 215Google Scholar
Ning W G, Zhang Y, Li Z H, Tang J 2019 Journal of Quantum Optics 25 215Google Scholar
[27] Chen X D, Zheng Y, Du B, Li D F, Li S, Dong Y, Guo G C, Sun F W 2019 Phys. Rev. Appl. 11 064024Google Scholar
[28] Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Weis C D, Schenkel T, Awschalom D D 2010 Nat. Phys. 6 668Google Scholar
[29] Alegre T P M, Santori C, Medeiros-Ribeiro G, Beausoleil R G 2007 Phys. Rev. B 76 165205Google Scholar
[30] 赵锐, 赵彬彬, 王磊, 郭浩, 唐军, 刘俊 2018 微纳电子技术 55 683Google Scholar
Zhao R, Zhao B B, Wang L, Guo H, Tang J, Liu J 2018 Micronanoelectronic Technology 55 683Google Scholar
-
-
[1] Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar
[2] Suter D, Jelezko F 2017 Prog. Nucl. Magn. Reson. Spectrosc. 98-99 50Google Scholar
[3] Zhang C, Yuan H, Zhang N, Xu L, Zhang J, Li B, Fang J 2018 J. Phys. D: Appl. Phys. 51 155102Google Scholar
[4] Luo M X, Li H R, Lai H, Wang X 2016 Sci. Rep. 6 25977Google Scholar
[5] Balasubramanian G, Lazariev A, Arumugam S R, Duan D 2014 Curr. Opin. Chem. Biol. 20 69Google Scholar
[6] Doherty M W, Acosta V M, Jarmola A, Barson M S J, Hollenberg L C L 2013 Phys. Rev. B 90 12Google Scholar
[7] Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar
[8] Rendler T, Neburkova J, Zemek O, Kotek J, Zappe A, Chu Z, Cigler P, Wrachtrup J 2017 Nat. Commun. 8 14701Google Scholar
[9] Yang Z, Kong X, Li Z, Yang K, Yu P, Wang P, Wang Y, Qin X, Rong X, Duan C K, Shi F, Du J 2020 Adv. Quantum. Technol. 3 1900136Google Scholar
[10] Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F, Jacques V 2011 Phys. Rev. B 84 195204Google Scholar
[11] Yavkin B V, Soltamov V A, Babunts R A, Anisimov A N, Baranov P G, Shakhov F M, Kidalov S V, Vul' A Y, Mamin G V, Orlinskii S B 2014 Appl. Magn. Reson. 45 1035Google Scholar
[12] Robledo L, Bernien H, van Weperen I, Hanson R 2010 Phys. Rev. Lett. 105 177403Google Scholar
[13] Wang F, Zu C, He L, Wang W B, Zhang W G, Duan L M 2016 Phys. Rev. B 94 064304Google Scholar
[14] Xu L, Yuan H, Zhang N, Zhang J, Bian G, Fan P, Li M, Zhang C, Zhai Y, Fang J 2019 Opt. Express 27 10787Google Scholar
[15] Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2013 Nat. Phys. 10 21Google Scholar
[16] Poggiali F, Cappellaro P, Fabbri N 2017 Phys. Rev. B 95 195308Google Scholar
[17] Giri R, Gorrini F, Dorigoni C, Avalos C E, Cazzanelli M, Tambalo S, Bifone A 2018 Phys. Rev. B 98 045401Google Scholar
[18] Robledo L, Bernien H, Sar T v d, Hanson R 2011 New J. Phys. 13 025013Google Scholar
[19] Chakraborty T, Zhang J, Suter D 2017 New J. Phys. 19 073030Google Scholar
[20] Fu K M C, Santori C, Barclay P E, Beausoleil R G 2010 Appl. Phys. Lett. 96 121907Google Scholar
[21] Bluvstein D, Zhang Z, Jayich A C B 2019 Phys. Rev. Lett. 122 076101Google Scholar
[22] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar
Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar
[23] Zhang N, Zhang C, Xu L, Ding M, Quan W, Tang Z, Yuan H 2016 Appl. Magn. Reson. 47 589Google Scholar
[24] Ma Y, Rohlfing M, Gali A 2010 Phys. Rev. B 81 041204Google Scholar
[25] Zhu Q, Guo H, Chen Y, Wu D, Zhao B, Wang L, Zhang Y, Zhao R, Du F, Tang J, Liu J 2018 Jpn. J. Appl. Phys. 57 110309Google Scholar
[26] 宁伟光, 张扬, 李中豪, 唐军 2019 量子光学学报 25 215Google Scholar
Ning W G, Zhang Y, Li Z H, Tang J 2019 Journal of Quantum Optics 25 215Google Scholar
[27] Chen X D, Zheng Y, Du B, Li D F, Li S, Dong Y, Guo G C, Sun F W 2019 Phys. Rev. Appl. 11 064024Google Scholar
[28] Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Weis C D, Schenkel T, Awschalom D D 2010 Nat. Phys. 6 668Google Scholar
[29] Alegre T P M, Santori C, Medeiros-Ribeiro G, Beausoleil R G 2007 Phys. Rev. B 76 165205Google Scholar
[30] 赵锐, 赵彬彬, 王磊, 郭浩, 唐军, 刘俊 2018 微纳电子技术 55 683Google Scholar
Zhao R, Zhao B B, Wang L, Guo H, Tang J, Liu J 2018 Micronanoelectronic Technology 55 683Google Scholar
计量
- 文章访问数: 9409
- PDF下载量: 314
- 被引次数: 0