搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高频率分辨的金刚石氮-空位色心宽频谱成像技术

申圆圆 王博 柯冬倩 郑斗斗 李中豪 温焕飞 郭浩 李鑫 唐军 马宗敏 李艳君 伊戈尔∙费拉基米罗维奇∙雅明斯基 刘俊

引用本文:
Citation:

高频率分辨的金刚石氮-空位色心宽频谱成像技术

申圆圆, 王博, 柯冬倩, 郑斗斗, 李中豪, 温焕飞, 郭浩, 李鑫, 唐军, 马宗敏, 李艳君, 伊戈尔∙费拉基米罗维奇∙雅明斯基, 刘俊

High-frequency resolution diamond nitrogen-vacancy center wide-spectrum imaging technology

Shen Yuan-Yuan, Wang Bo, Ke Dong-Qian, Zheng Dou-Dou, Li Zhong-Hao, Wen Huan-Fei, Guo Hao, Li Xin, Tang Jun, Ma Zong-Min, Li Yan-Jun, Igor Vladimirovich Yaminsky, Liu Jun
PDF
HTML
导出引用
  • 高分辨率宽频谱测量技术在天文学、无线通信、医学成像等领域具有重要应用价值. 金刚石氮-空位(nitrogen-vacancy, NV)色心因其高稳定性、高灵敏度、实时监测、单点探测以及适用于长时间测量等特性已成为频谱分析仪备受关注的选择. 目前, 基于NV色心作为探测器的宽频谱分析仪能够在几十GHz频带内进行实时频谱分析, 然而其频率分辨率仅达到MHz水平. 本文通过搭建结合连续外差技术的量子金刚石微波频谱成像系统, 利用磁场梯度对NV色心谐振频率进行空间编码, 成功获取了900 MHz—6.0 GHz范围内完整的频谱数据. 在可测频谱范围内, 系统进一步采用连续外差的方法, 同时施加谐振微波和轻微失谐的辅助微波对NV色心进行有效激发, 增强了NV磁强计对微弱微波信号的响应. 该方法使系统在可测频谱范围内实现了1 Hz的频率分辨率, 并能够对间隔为1 MHz扫频步进的多个频点的频率分辨率进行单独测量. 以上研究结果表明基于NV色心的宽频谱测量可实现Hz级频率分辨, 为未来的频谱分析和应用提供了有力的技术支持.
    High-resolution wide-spectrum measurement techniques have important applications in fields such as astronomy, wireless communication, and medical imaging. Nitrogen-vacancy (NV) center in diamond is well known for its high stability, high sensitivity, real-time monitoring, single-point detection, and suitability for long-term measurement, and has an outstanding choice for spectrum analyzers. Currently, spectrum analyzers based on NV centers as detectors can perform real-time spectrum analysis in the range of several tens of gigahertz, but their frequency resolution is limited to a MHz level. In this study, we construct a quantum diamond microwave spectrum imaging system by combining continuous wave-mixing techniques. According to the spin-related properties of the NV center in diamond, we implement optical pumping by 532 nm green laser light illuminating the diamond NV center. A spherical magnet is used to produce a magnetic field gradient along the direction of the diamond crystal. By adjusting the size and direction of the magnetic field gradient, spatial encoding of the resonance frequency of the NV center is achieved. The magnetic field gradient induces the Zeeman effect on the diamond surface at different positions, generating corresponding ODMR signals. Through accurate programming, we coordinate the frequency scanning step size of the microwave source with the camera exposure and image storage time, and synchronize them circularly according to the order of image acquisition. Ultimately, after algorithmic processing, we successfully obtain comprehensive spectrum data in a range from 900 MHz to 6.0 GHz. Within the measurable spectrum range, the system employs continuous wave-mixing, simultaneously applying resonant microwaves and slightly detuning auxiliary microwaves to effectively excite the NV center. This method triggers off microwave interference effects, disrupting the balance between laser-induced polarization and microwave-induced spontaneous relaxation. Specifically, microwave interference causes the phase and amplitude of the fluorescence signal to change, leading to the generation of alternating current fluorescence signals. This further enhances the response of the NV magnetometer to weak microwave signals. The method enables the system to achieve a frequency resolution of 1 Hz in the measurable spectrum range, and it can separately measure the frequency resolution of multiple frequency points with a frequency step size of 1 MHz. The research results indicate that the wide-spectrum measurement based on NV centers can achieve sub-hertz frequency resolution, providing robust technical support for future spectrum analysis and applications.
      通信作者: 马宗敏, mzmncit@163.com ; 刘俊, liuj@nuc.edu.cn
    • 基金项目: 国防基础科学研究计划、国家自然科学基金国际合作与交流项目(批准号: 62220106012)、山西省杰出青年基金(批准号: 202103021221007)和山西省“1331”项目重点学科建设基金(批准号: 1331KSC)资助的课题.
      Corresponding author: Ma Zong-Min, mzmncit@163.com ; Liu Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China, the International Cooperation and Exchange Project of the National Natural Science Foundation of China (Grant No. 62220106012), the Shanxi Provincial Fund for Outstanding Young Scholars, China (Grant No. 202103021221007), and the Fund for Shanxi Provincial “1331” Project Key Subjects Construction, China (Grant No. 1331KSC).
    [1]

    Pastor-Marazuela I, Connor L, van Leeuwen J, Maan, Y, ter Veen S, Bilous A, Oostrum L, Petroff E, Straal S, Vohl D, Attema J, Boersma O M, Kooistra E, van der Schuur D, Sclocco A, Smits R, Adams E A K, Adebahr B, de Blok W J G, Coolen A H W M, Damstra S, Dénes H, Hess K M, van der Hulst T, Hut B, Ivashina V M, Kutkin A, Loose G M, Lucero D M, Mika A, Moss V A, Mulder H, Norden M J, Oosterloo T, Orrú E, Ruiter M, Wijnholds S J 2021 Nature 596 505Google Scholar

    [2]

    Holl P M, Reinhard F 2017 Phys. Rev. Lett. 118 183901Google Scholar

    [3]

    Chandra R, Zhou H Y, Balasingham I, Narayanan R M 2015 IEEE. Trans. Biomed. Eng. 62 1667Google Scholar

    [4]

    Boss J M, Cujia K S, Zopes J, Degen C L 2017 Science 356 837Google Scholar

    [5]

    Assouly R, Dassonneville R, Peronnin T, Bienfait A, Huard B 2023 Nat. Phys. 19 1418Google Scholar

    [6]

    Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar

    [7]

    Joas T, Waeber A M, Braunbeck G, Reinhard F 2017 Nat. Commun. 8 964Google Scholar

    [8]

    Haikka P, Kubo Y, Bienfait A, Bertet P, Molmer K 2017 Phys. Rev. A 95 022306Google Scholar

    [9]

    Wang Y W, Liu Y S, Guo H, Han X C, Cai A J, Li S K, Zhao P F, Liu J 2020 Appl. Phys. Express 13 112002Google Scholar

    [10]

    Shao L B, Liu R S, Zhang M, Shneidman A V, Audier X, Markham M, Dhillon H, Twitchen D J, Xiao Y F, Loncar M 2016 Adv. Opt. Mater. 4 1075Google Scholar

    [11]

    Chipaux M, Toraille L, Larat C, Morvan L, Pezzagna S, Meijer J, Debuisschert T 2015 Appl. Phys. Lett. 107 233502Google Scholar

    [12]

    Ludovic M, Thierry D 2018 International Topical Meeting on Microwave Photonics Toulouse, France, October 22-25, 2018 p1

    [13]

    Magaletti S, Mayer L, Roc J F, Debuisschert T 2022 Comm. Eng. 1 19Google Scholar

    [14]

    Meinel J, Vorobyov V, Yavkin B, Dasari D, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2021 Nat. Commun. 12 2737Google Scholar

    [15]

    Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar

    [16]

    Fescenko I, Jarmola A, Savukov I, Kehayias P, Smits J, Damron J, Ristoff N, Mosavian N, Acosta V M 2020 Phys. Rev. Res. 2 023394Google Scholar

    [17]

    Likhachev K V, Breev I D, Kidalov S V, Baranov P G, Nagalyuk S S, Ankudinov A V, Anisimov A N 2022 JETP Lett. 116 840Google Scholar

    [18]

    Ho K O, Leung M Y, Wang W Y, Xie J Y, Yip K Y, Wu J H, Goh S K, Denisenko A, Wrachtrup J, Yang S 2023 Phys. Rev. Appl. 19 044091Google Scholar

    [19]

    Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601Google Scholar

    [20]

    Zargaleh S A, von Bardeleben H J, Cantin J L, Gerstmann U, Hameau S, Eblé B, Gao W 2018 Phys. Rev. B 98 214113Google Scholar

    [21]

    Sangtawesin S, Dwyer B L, Srinivasan S, Allred J J, Rodgers L V H, De Greve K, Stacey A, Dontschuk N, O'Donnell K M, Hu D, Evans D A, Jaye C, Fischer D A, Markham M L, Twitchen D J, Park H, Lukin M D, de Leon N P 2019 Phys. Rev. X 9 031052Google Scholar

  • 图 1  NV色心频谱分析 (a) NV色心能级图; (b) 沿D轴向金刚石晶体施加磁场梯度; (c) 在金刚石晶体表面不同位置, 磁场梯度引起塞曼效应导致相应的ODMR信号产生; (d) 使用相机对图像进行采集并将其保存为三维数据; (e) 利用算法拟合将图像存储格式从三维数据转变为二维数据, 在整个磁梯度范围内, 通过拼接图像来生成对应的频谱图像; (f) 测量可测频谱范围内的任意频点的频率分辨率

    Fig. 1.  NV center spectral analysis: (a) Energy level diagram of the NV center; (b) application of a magnetic field gradient along the D-axis of the diamond crystal; (c) magnetic field gradient induces the Zeeman effect at different positions on the surface of the diamond crystal, resulting in corresponding ODMR signals; (d) acquisition of images using a camera and conversion into three-dimensional data; (e) utilization of an algorithm for fitting, transforming the image storage format from three-dimensional data to two-dimensional data, and generating the corresponding spectral images across the entire magnetic gradient range; (f) measurement of frequency resolution at arbitrary frequency points within the measurable spectral range.

    图 2  实验装置系统

    Fig. 2.  Experimental Setup System.

    图 3  调整磁场与NV轴对准的过程 (a) ODMR成像呈现了四组谱线, 对应于磁场方向与NV色心的4个轴向均未对齐; (b) ODMR成像显示了两组谱线, 其中三组谱线重叠, 对应于磁场与某一NV轴对齐

    Fig. 3.  Process to align magnetic field and NV centers: (a) ODMR imaging presents four sets of spectra, corresponding to a misalignment of the magnetic field with all four axial directions of the NV centers; (b) ODMR imaging displays two sets of spectra, with three of them overlapping, indicating alignment of the magnetic field with a specific NV axis.

    图 4  叠加磁铁在不同位置相对应的微波频谱图像

    Fig. 4.  Overlay microwave spectroscopy images corresponding to magnets positioned at different locations.

    图 5  NV色心共振线宽不均匀展宽原因 (a) NV色心零场ODMR谱; (b) 在3.02 GHz处不同微波功率下的ODMR的单峰曲线

    Fig. 5.  Causes of non-uniform broadening of NV center resonance linewidth: (a) Zero-field ODMR spectrum of NV centers; (b) single-peak curves of ODMR at 3.02 GHz under different microwave powers.

    图 6  频率分辨率测量结果 (a) 在可测频谱范围内选取与3.50 GHz频率差为1000, 100, 100, 5, 1, 0.1 Hz的频率点的外差实验时域测量结果; (b) 在可测频谱范围内选取与3.50 GHz频率差为1000, 100, 100, 5, 1, 0.1 Hz的频率点的外差实验频域测量结果; (c) 在可测频谱范围内多个谐振频率点的频率分辨率测量结果

    Fig. 6.  Frequency resolution measurement results: (a) Time-domain measurement results of heterodyne experiments at frequency differences of 1000, 100, 100, 5, 1, 0.1 Hz relative to 3.50 GHz within the measurable spectral range; (b) frequency-domain measurement results of heterodyne experiments at frequency differences of 1000, 100, 100, 5, 1, 0.1 Hz relative to 3.50 GHz within the measurable spectral range; (c) frequency resolution measurement results of multiple resonant frequency points within the measurable spectral range.

  • [1]

    Pastor-Marazuela I, Connor L, van Leeuwen J, Maan, Y, ter Veen S, Bilous A, Oostrum L, Petroff E, Straal S, Vohl D, Attema J, Boersma O M, Kooistra E, van der Schuur D, Sclocco A, Smits R, Adams E A K, Adebahr B, de Blok W J G, Coolen A H W M, Damstra S, Dénes H, Hess K M, van der Hulst T, Hut B, Ivashina V M, Kutkin A, Loose G M, Lucero D M, Mika A, Moss V A, Mulder H, Norden M J, Oosterloo T, Orrú E, Ruiter M, Wijnholds S J 2021 Nature 596 505Google Scholar

    [2]

    Holl P M, Reinhard F 2017 Phys. Rev. Lett. 118 183901Google Scholar

    [3]

    Chandra R, Zhou H Y, Balasingham I, Narayanan R M 2015 IEEE. Trans. Biomed. Eng. 62 1667Google Scholar

    [4]

    Boss J M, Cujia K S, Zopes J, Degen C L 2017 Science 356 837Google Scholar

    [5]

    Assouly R, Dassonneville R, Peronnin T, Bienfait A, Huard B 2023 Nat. Phys. 19 1418Google Scholar

    [6]

    Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar

    [7]

    Joas T, Waeber A M, Braunbeck G, Reinhard F 2017 Nat. Commun. 8 964Google Scholar

    [8]

    Haikka P, Kubo Y, Bienfait A, Bertet P, Molmer K 2017 Phys. Rev. A 95 022306Google Scholar

    [9]

    Wang Y W, Liu Y S, Guo H, Han X C, Cai A J, Li S K, Zhao P F, Liu J 2020 Appl. Phys. Express 13 112002Google Scholar

    [10]

    Shao L B, Liu R S, Zhang M, Shneidman A V, Audier X, Markham M, Dhillon H, Twitchen D J, Xiao Y F, Loncar M 2016 Adv. Opt. Mater. 4 1075Google Scholar

    [11]

    Chipaux M, Toraille L, Larat C, Morvan L, Pezzagna S, Meijer J, Debuisschert T 2015 Appl. Phys. Lett. 107 233502Google Scholar

    [12]

    Ludovic M, Thierry D 2018 International Topical Meeting on Microwave Photonics Toulouse, France, October 22-25, 2018 p1

    [13]

    Magaletti S, Mayer L, Roc J F, Debuisschert T 2022 Comm. Eng. 1 19Google Scholar

    [14]

    Meinel J, Vorobyov V, Yavkin B, Dasari D, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2021 Nat. Commun. 12 2737Google Scholar

    [15]

    Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar

    [16]

    Fescenko I, Jarmola A, Savukov I, Kehayias P, Smits J, Damron J, Ristoff N, Mosavian N, Acosta V M 2020 Phys. Rev. Res. 2 023394Google Scholar

    [17]

    Likhachev K V, Breev I D, Kidalov S V, Baranov P G, Nagalyuk S S, Ankudinov A V, Anisimov A N 2022 JETP Lett. 116 840Google Scholar

    [18]

    Ho K O, Leung M Y, Wang W Y, Xie J Y, Yip K Y, Wu J H, Goh S K, Denisenko A, Wrachtrup J, Yang S 2023 Phys. Rev. Appl. 19 044091Google Scholar

    [19]

    Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T, Awschalom D D 2008 Phys. Rev. Lett. 101 117601Google Scholar

    [20]

    Zargaleh S A, von Bardeleben H J, Cantin J L, Gerstmann U, Hameau S, Eblé B, Gao W 2018 Phys. Rev. B 98 214113Google Scholar

    [21]

    Sangtawesin S, Dwyer B L, Srinivasan S, Allred J J, Rodgers L V H, De Greve K, Stacey A, Dontschuk N, O'Donnell K M, Hu D, Evans D A, Jaye C, Fischer D A, Markham M L, Twitchen D J, Park H, Lukin M D, de Leon N P 2019 Phys. Rev. X 9 031052Google Scholar

  • [1] 刘厚盛, 郭世峰, 陈明, 张国凯, 郭崇, 高学栋, 蔚翠. 微波等离子化学气相沉积法制备高浓度金刚石-空位色心及其性能研究. 物理学报, 2025, 74(2): 028102. doi: 10.7498/aps.74.20241438
    [2] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [3] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控. 物理学报, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [4] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [5] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [6] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [7] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [8] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [9] 赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰. 基于金刚石固态单自旋的纳米尺度零场探测. 物理学报, 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [10] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211348
    [11] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [12] 冯园耀, 李中豪, 张扬, 崔凌霄, 郭琦, 郭浩, 温焕飞, 刘文耀, 唐军, 刘俊. 固态金刚石氮空位色心光学调控优化. 物理学报, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [13] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [14] 廖庆洪, 叶杨, 李红珍, 周南润. 金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究. 物理学报, 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [15] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [16] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [17] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [18] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [19] 王盟盟, 权润爱, 邰朝阳, 侯飞雁, 刘涛, 张首刚, 董瑞芳. 通信波长频率一致纠缠光源的频谱测量. 物理学报, 2014, 63(19): 194206. doi: 10.7498/aps.63.194206
    [20] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
计量
  • 文章访问数:  2874
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-21
  • 修回日期:  2023-12-20
  • 上网日期:  2024-01-02
  • 刊出日期:  2024-03-20

/

返回文章
返回