搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石表面纳米尺度水分子的相变观测

杨志平 孔熙 石发展 杜江峰

引用本文:
Citation:

金刚石表面纳米尺度水分子的相变观测

杨志平, 孔熙, 石发展, 杜江峰

Phase transition observation of nanoscale water on diamond surface

Yang Zhi-Ping, Kong Xi, Shi Fa-Zhan, Du Jiang-Feng
PDF
HTML
导出引用
  • 水是自然界中最重要的物质之一, 研究界面或受限体系的水分子动力学具有重要的科学意义. 近些年新兴的基于氮-空位(NV)色心的纳米磁共振技术可以同时观测纳米尺度的核磁信号和温度. 本文利用单个NV色心成功探测到金刚石表面纳米尺度水分子分别在固态和液态条件下的核磁信号, 并通过改变温度成功观测到该纳米尺度水层的固-液相变. 实验结果表明, 基于NV色心的核磁共振技术可以有效地探测纳米尺度物质的结构和动力学行为, 为纳米尺度受限体系相关科学的研究提供新的探测手段.
    Water is one of the most important substances in the world. It is a crucial issue to study the dynamics of water molecules at interfaces or in the confined systems. In recent years, the emerging magnetic resonance technique based on nitrogen-vacancy (NV) center has allowed us to observe the nanoscale nuclear magnetic signal and temperature simultaneously. Here we succeed in measuring the nuclear magnetic resonance (NMR) signals of nanoscale solid and liquid water on diamond surface by NV center, and observing the solid-liquid phase transition of these nano-water by temperature control. This work demonstrates that the nano-NMR technique based on NV centers can probe the dynamics behavior of nanoscale materials effectively, providing a new way for studying the nanoscale confined systems.
      通信作者: 孔熙, kongxi@nju.edu.cn ; 石发展, fzshi@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 81788101, 11722544, 91636217)、国家重点研发计划(批准号: 2018YFA0306600, 2016YFA0502400)、中国科学院(批准号: GJJSTD20170001, QYZDY-SSW-SLH004)和量子通信与量子计算机重大项目安徽省引导性项目(批准号: AHY050000)资助的课题
      Corresponding author: Kong Xi, kongxi@nju.edu.cn ; Shi Fa-Zhan, fzshi@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 81788101, 11722544, 91636217), the National Key R&D Program of China (Grant Nos. 2018YFA0306600, 2016YFA0502400), the Chinese Academy of Sciences (Grant Nos. GJJSTD20170001, QYZDY-SSW-SLH004), and the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY050000)
    [1]

    Guo J, Lü J T, Feng Y, Chen J, Peng J, Lin Z, Meng X, Wang Z, Li X Z, Wang E G, Jiang Y 2016 Science 352 321Google Scholar

    [2]

    Wang H J, Xi X K, Kleinhammes A, Wu Y 2008 Science 322 80Google Scholar

    [3]

    Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443Google Scholar

    [4]

    Amann-Winkel K, Bellissent-Funel M C, Bove L E, Loerting T, Nilsson A, Paciaroni A, Schlesinger D, Skinner L 2016 Chem. Rev. 116 7570Google Scholar

    [5]

    Dubochet J, Lepault J, Freeman R, Berriman J A, Homo J C 1982 J. Microsc. 128 219Google Scholar

    [6]

    Sotak C H 2004 Neurochem. Int. 45 569Google Scholar

    [7]

    Marcus Y, Hefter G 2006 Chem. Rev. 106 4585Google Scholar

    [8]

    Shiotari A, Sugimoto Y 2017 Nat. Commun. 8 14313Google Scholar

    [9]

    Guo J, Bian K, Lin Z, Jiang Y 2016 J. Chem. Phys. 145 160901Google Scholar

    [10]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar

    [11]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561Google Scholar

    [12]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557Google Scholar

    [13]

    Shi F, Zhang Q, Wang P, Sun H, Wang J, Rong X, Chen M, Ju C, Reinhard F, Chen H, Wrachtrup J, Wang J, Du J 2015 Science 347 1135Google Scholar

    [14]

    Lovchinsky I, Sushkov A O, Urbach E, Leon N P d, Choi S, Greve K D, Evans R, Gertner R, Bersin E, Müller C, McGuinness L, Jelezko F, Walsworth R L, Park H, Lukin M D 2016 Science 351 836Google Scholar

    [15]

    Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Fávaro de Oliveira F, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2017 Science 357 67Google Scholar

    [16]

    Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar

    [17]

    Wissner-Gross A D, Kaxiras E 2007 Phys. Rev. E 76 020501Google Scholar

    [18]

    Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar

    [19]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [20]

    Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar

    [21]

    Herbschleb E D, Kato H, Maruyama Y, Danjo T, Makino T, Yamasaki S, Ohki I, Hayashi K, Morishita H, Fujiwara M, Mizuochi N 2019 Nat. Commun. 10 3766Google Scholar

    [22]

    McGuinness L P, Hall L T, Stacey A, Simpson D A, Hill C D, Cole J H, Ganesan K, Gibson B C, Prawer S, Mulvaney P, Jelezko F, Wrachtrup J, Scholten R E, Hollenberg L C L 2013 New J. Phys. 15 073042Google Scholar

    [23]

    Taminiau T H, Wagenaar J J T, van der Sar T, Jelezko F, Dobrovitski V V, Hanson R 2012 Phys. Rev. Lett. 109 137602Google Scholar

    [24]

    Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J, Meriles C A 2013 Nat. Commun. 4 1651Google Scholar

    [25]

    Staudacher T, Raatz N, Pezzagna S, Meijer J, Reinhard F, Meriles C A, Wrachtrup J 2015 Nat. Commun. 6 8527Google Scholar

    [26]

    Wang N, Liu G Q, Leong W H, Zeng H, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q, Liu R B 2018 Phys. Rev. X 8 011042Google Scholar

    [27]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542Google Scholar

    [28]

    Shields B, Unterreithmeier Q, de Leon N, Park H, Lukin M 2015 Phys. Rev. Lett. 114 136402Google Scholar

  • 图 1  实验装置示意图. 从上到下分别为半导体制冷片、铜制导热板、共面波导、封装好的样品水、含有NV色心的金刚石薄膜、玻璃片, 插图为NV色心的结构和基本的动力学去耦序列

    Fig. 1.  Schematic of the experimental setup. From top to bottom are semiconductor cooler, copper plate, waveguide, sample water, diamond film with NV center and glass sheet. The inset shows the structure of the NV center and the dynamic decoupling pulse sequence.

    图 2  利用NV色心测量水分子的示意图, 该方法得到的氢核共振谱线展宽受限于核自旋的弛豫时间$T_2^{*}$、NV色心的相干时间$T_{\rm{NV}}$以及分子扩散或磁偶极相互作用 (a)测量液态水示意图, 扩散会导致待测分子离开探测区域, 信号变弱, 谱线增宽; (b)测量固态水示意图, 扩散作用消失, 核自旋间的偶极相互作用会引起谱线的展宽

    Fig. 2.  Schematic of measuring water molecules by NV center. The hydrogen NMR spectra line broadening obtained is limited by the relaxation time $T_2^{*}$ of nuclear spins, the coherence time $T_{\rm{NV}}$ of NV center and the diffusion or magnetic dipole interactions: (a) Schematic of measurements of liquid water, where diffusion causes the signal molecule to leave detection region, weakening the signal amplitude and broadening the spectral line width; (b) schematic of measurements of solid water, where dipole interactions between the nuclear spins cause the broadening of the spectra.

    图 3  固-液环境下水分子的NMR谱和关联谱信号 (a) 上: 周期性动力学去耦脉冲序列; 中: $\Delta D$值为1.27 MHz (11.1 ℃) 的液态环境下水分子中质子的纳米NMR谱, 线宽为53(9) kHz; 下: $\Delta D$值为3.18 MHz (–8.8 ℃)的固态环境下水分子中质子的纳米NMR谱, 线宽为33(5) kHz; (b)上: 关联谱脉冲序列; 中: $\Delta D$值为1.27 MHz的液态环境下水分子中质子的时域关联谱信号, 其衰减时间为12(3) μs; 下: $\Delta D$值为3.18 MHz的固态环境下水分子中质子的时域关联谱信号, 其衰减时间为46(11) μs

    Fig. 3.  NMR spectra and correlation spectroscopy signals of water molecules in a solid and liquid environment. (a) Top: periodic dynamic decoupling pulse sequence; middle: nano-NMR spectrum of protons in water molecules with a linewidth of 53(9) kHz in a liquid environment at $\Delta D$ value of 1.27 MHz (11.1 ℃); bottom: nano-NMR spectrum of protons in water molecules with a linewidth of 33(5) kHz in a solid environment at $\Delta D$ value of 3.18 MHz (–8.8 ℃); (b) top: correlation spectroscopy pulse sequence; middle: time-domain correlation spectroscopy signal of protons in water molecules with a decay time of 12(3) μs in a liquid environment at $\Delta D$ value of 1.27 MHz; time-domain correlation spectroscopy signal of protons in water molecules with a decay time of 46(11) μs in a liquid environment at $\Delta D$ value of 3.18 MHz.

    图 4  (a) NV色心的基态能级的塞曼劈裂; (b)利用ODMR共振波谱技术, 可以得到NV色心电子自旋态$m_{{\rm{s}}}=0, -1$以及$m_{{\rm{s}}}=0, +1$之间的跃迁频率, 进而测量出D值. 上、中、下图分别为连续波谱序列、室温(19 ℃)和温度为11.1 ℃时测量得到的共振波谱; (c) NV色心零场劈裂变化值$\Delta {{D}}$随温度的变化关系, 对应的${\rm{d}} D / {\rm{d}} T= - 87(12)\; \rm{kHz} / \rm{K}$

    Fig. 4.  (a) Zeeman splitting of the ground state energy level of the NV center. (b) Using ODMR spectroscopy technique, we can obtain the frequencies between electron spin states $m_{{\rm{s}}}=0, -1$ and $m_{{\rm{s}}}=0, +1$, then the zero splitting D is measured. From top to bottom are the sequence of ODMR spectroscopy, and two spectra at room temperature (19 ℃) and low temperature (11.1 ℃), respectively. (c) The variation of zero-field splitting variation $\Delta {{D}}$ as a function of temperature, with ${\rm{d }}D / {\rm{d}} T=-87(12)\; \rm{kHz} / \rm{K}$.

    图 5  利用关联谱方法探测金刚石表面水分子的相变

    Fig. 5.  Phase transition of water on diamond surfaces using correlation spectroscopy method.

  • [1]

    Guo J, Lü J T, Feng Y, Chen J, Peng J, Lin Z, Meng X, Wang Z, Li X Z, Wang E G, Jiang Y 2016 Science 352 321Google Scholar

    [2]

    Wang H J, Xi X K, Kleinhammes A, Wu Y 2008 Science 322 80Google Scholar

    [3]

    Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443Google Scholar

    [4]

    Amann-Winkel K, Bellissent-Funel M C, Bove L E, Loerting T, Nilsson A, Paciaroni A, Schlesinger D, Skinner L 2016 Chem. Rev. 116 7570Google Scholar

    [5]

    Dubochet J, Lepault J, Freeman R, Berriman J A, Homo J C 1982 J. Microsc. 128 219Google Scholar

    [6]

    Sotak C H 2004 Neurochem. Int. 45 569Google Scholar

    [7]

    Marcus Y, Hefter G 2006 Chem. Rev. 106 4585Google Scholar

    [8]

    Shiotari A, Sugimoto Y 2017 Nat. Commun. 8 14313Google Scholar

    [9]

    Guo J, Bian K, Lin Z, Jiang Y 2016 J. Chem. Phys. 145 160901Google Scholar

    [10]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar

    [11]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561Google Scholar

    [12]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557Google Scholar

    [13]

    Shi F, Zhang Q, Wang P, Sun H, Wang J, Rong X, Chen M, Ju C, Reinhard F, Chen H, Wrachtrup J, Wang J, Du J 2015 Science 347 1135Google Scholar

    [14]

    Lovchinsky I, Sushkov A O, Urbach E, Leon N P d, Choi S, Greve K D, Evans R, Gertner R, Bersin E, Müller C, McGuinness L, Jelezko F, Walsworth R L, Park H, Lukin M D 2016 Science 351 836Google Scholar

    [15]

    Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Fávaro de Oliveira F, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2017 Science 357 67Google Scholar

    [16]

    Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar

    [17]

    Wissner-Gross A D, Kaxiras E 2007 Phys. Rev. E 76 020501Google Scholar

    [18]

    Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar

    [19]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [20]

    Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar

    [21]

    Herbschleb E D, Kato H, Maruyama Y, Danjo T, Makino T, Yamasaki S, Ohki I, Hayashi K, Morishita H, Fujiwara M, Mizuochi N 2019 Nat. Commun. 10 3766Google Scholar

    [22]

    McGuinness L P, Hall L T, Stacey A, Simpson D A, Hill C D, Cole J H, Ganesan K, Gibson B C, Prawer S, Mulvaney P, Jelezko F, Wrachtrup J, Scholten R E, Hollenberg L C L 2013 New J. Phys. 15 073042Google Scholar

    [23]

    Taminiau T H, Wagenaar J J T, van der Sar T, Jelezko F, Dobrovitski V V, Hanson R 2012 Phys. Rev. Lett. 109 137602Google Scholar

    [24]

    Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J, Meriles C A 2013 Nat. Commun. 4 1651Google Scholar

    [25]

    Staudacher T, Raatz N, Pezzagna S, Meijer J, Reinhard F, Meriles C A, Wrachtrup J 2015 Nat. Commun. 6 8527Google Scholar

    [26]

    Wang N, Liu G Q, Leong W H, Zeng H, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q, Liu R B 2018 Phys. Rev. X 8 011042Google Scholar

    [27]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542Google Scholar

    [28]

    Shields B, Unterreithmeier Q, de Leon N, Park H, Lukin M 2015 Phys. Rev. Lett. 114 136402Google Scholar

  • [1] 刘厚盛, 郭世峰, 陈明, 张国凯, 郭崇, 高学栋, 蔚翠. 微波等离子化学气相沉积法制备高浓度金刚石-空位色心及其性能研究. 物理学报, 2025, 74(2): 028102. doi: 10.7498/aps.74.20241438
    [2] 申圆圆, 王博, 柯冬倩, 郑斗斗, 李中豪, 温焕飞, 郭浩, 李鑫, 唐军, 马宗敏, 李艳君, 伊戈尔∙费拉基米罗维奇∙雅明斯基, 刘俊. 高频率分辨的金刚石氮-空位色心宽频谱成像技术. 物理学报, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [3] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [4] 刘刚钦. 极端条件下的金刚石自旋量子传感. 物理学报, 2022, 71(6): 066101. doi: 10.7498/aps.71.20212072
    [5] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [6] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [7] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [8] 赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰. 基于金刚石固态单自旋的纳米尺度零场探测. 物理学报, 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [9] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [10] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211348
    [11] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [12] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [13] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控. 物理学报, 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [14] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [15] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [16] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [17] 高嵩, 朱艳春, 李硕, 包尚联. 核磁共振水分子扩散张量成像中基于广义Fibonacci数列的扩散敏感梯度磁场方向分布方案. 物理学报, 2014, 63(4): 048704. doi: 10.7498/aps.63.048704
    [18] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [19] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [20] 方细明, 朱熙文, 冯 芒, 高克林, 施 磊. 核磁共振量子计算中的赝纯态制备. 物理学报, 1999, 48(8): 1405-1411. doi: 10.7498/aps.48.1405
计量
  • 文章访问数:  5973
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-08-17
  • 上网日期:  2022-03-07
  • 刊出日期:  2022-03-20

/

返回文章
返回