搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下的色心磁共振和量子传感

刘刚钦

引用本文:
Citation:

高压下的色心磁共振和量子传感

刘刚钦

Magnetic resonance and quantum sensing with color centers under high pressures

Liu Gang-Qin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 高压极端条件是实现和调控新奇物态的重要途径,磁共振技术是材料微观磁结构和磁性表征的重要方法,两者的融合为物质科学前沿研究提供了新的机遇。然而,传统磁共振技术受限于自旋极化度低、信号探测效率差等因素,难以实现超高压极端条件下微米级小样品的原位测量。近年来,以金刚石氮空位中心为代表的色心量子传感迅速发展,为高压极端条件下的磁共振和原位量子传感提供了全新解决方案。本文总结了高压极端条件对金刚石氮空位中心自旋和光学性质的影响,梳理了高压下色心磁共振的基本现象和规律。同时,以高压下微区磁成像、压强探测、超导迈斯纳效应测量等应用为例,本文还介绍了高压下色心量子传感的近期研究进展。
    High pressure conditions are a crucial way to realize novel states and regulate material properties, while magnetic resonance technology is a widely used method to characterize microscopic magnetic structures and magnetic properties. The integration of these two fields offers new opportunities for cutting-edge research in condensed matter physics and materials science. However, it is challenging for conventional magnetic resonance to measure micrometer-sized samples under ultra-high pressure, as it is limited by low spin polarization and low signal detection efficiency. Recent advances in the field of quantum sensing in solids, in particular the development of quantum sensors based on diamond nitrogen vacancy (NV) centers, offer an innovative solution for magnetic resonance and in-situ quantum sensing under high-pressure conditions. This article summarizes the effects of high-pressure environments on the spin and optical properties of NV centers, with the aim of exploring the magnetic resonance of color centers under high pressure. In addition, with applications such as magnetic imaging, pressure detection, and characterization of the superconducting Meissner effect under high pressures, this article reviews recent advances in diamondbased quantum sensing under high-pressure conditions.
  • [1]

    . Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. PNAS 109, 6463 (2012).

    [2]

    . Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015).

    [3]

    . Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    [4]

    . Somayazulu, M. et al. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. Phys. Rev. Lett. 122, 027001 (2019).

    [5]

    . Zhang, L., Wang, Y., Lv, J. & Ma, Y. Materials discovery at high pressures. Nat. Rev. Mater. 2, 17005 (2017).

    [6]

    . Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542 (2004).

    [7]

    . Hirose, K., Fei, Y., Ma, Y. & Mao, H. K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53 (1999).

    [8]

    . Hu, Q. et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature 534, 241 (2016).

    [9]

    . Meier, T. At Its Extremes: NMR at Giga-Pascal Pressures. Annu Rep NMR Spectrosc 93, 1–74 (2018).

    [10]

    . Meier, T. et al. Pressure-Induced Hydrogen-Hydrogen Interaction in Metallic FeH Revealed by NMR. Phys. Rev. X 9, 031008 (2019).

    [11]

    . Dai, J.-H. et al. Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures. Chin. Phys. Lett. 39, 117601 (2022).

    [12]

    . Hilberer, A. et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy magnetometry up to 130 GPa. Phy.s Rev. B 107, L220102 (2023).

    [13]

    . Bhattacharyya, P. et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73 (2024).

    [14]

    . Wang, M. et al. Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in diamond anvil cell. Nat. Commun. 15, 8843 (2024).

    [15]

    . Liu, G.-Q., Feng, X., Wang, N., Li, Q. & Liu, R.-B. Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin. Nat. Commun. 10, 1344 (2019).

    [16]

    . Fan, J. W. et al. Quantum Coherence Control at Temperatures up to 1400 K. Nano Lett. 24, 14806 (2024)

    [17]

    . Fortman, B. et al. Electron-electron double resonance detected NMR spectroscopy using ensemble NV centers at 230 GHz and 8.3 T. J Appl. Phys. 130, 083901 (2021).

    [18]

    . Liu, G. Q. 极端条件下的金刚石自旋量子传感. 物理学报, 71, 066101 (2022).

    [19]

    . Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    [20]

    . Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 65, 83 (2014).

    [21]

    . Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    [22]

    . Casola, F., Van Der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088.

    [23]

    . Liu, G. Q., Liu, R. B. & Li, Q. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Acc. Chem. Res. 56, 95 (2022)

    [24]

    . Liu, G. Q., Xing, J. & Pan, X. Y. 金刚石氮空位中心自旋量子调控. 物理学报, 67, 120302 (2019).

    [25]

    . Dong, Y., Du, B., Zhang, S. C., Chen, X. D. & Sun, F. W. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 67, 160301 (2019).

    [26]

    . Peng, S., Liu, Y., Ma, W., Shi, F. & Du, J. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 67, 167601 (2019).

    [27]

    . Aslam, N. et al. Quantum sensors for biomedical applications. Nat. Rev. Phys. 5, 157 (2023).

    [28]

    . Wu, Y. & Weil, T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. Adv. Sci. 9, 2200059 (2022).

    [29]

    . Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).

    [30]

    . Lawson, A. W. & Tang, T. Y. A Diamond Bomb for Obtaining Powder Pictures at High Pressures. Rev. Sci. Instrum. 21, 815 (1950).

    [31]

    . Jayaraman, A. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65 (1983).

    [32]

    . Gruber, A. et al. Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science 276, 2012 (1997).

    [33]

    . Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1 (2013).

    [34]

    . Doherty, M. W. et al. Electronic Properties and Metrology Applications of the Diamond NV Center under Pressure. Phys. Rev. Lett. 112, 47601 (2014).

    [35]

    . Shang, Y. X. et al. Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins. Chin. Phys. Lett. 36, 086201 (2019).

    [36]

    . Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355 (2019).

    [37]

    . Shelton, D. P., Cabriales, W. & Salamat, A. Magnetometry in a diamond anvil cell using nitrogen vacancy centers in a nanodiamond ensemble. Rev. Sci. Instrum. 95, (2024).

    [38]

    . Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349 (2019).

    [39]

    . Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 366, 1359 (2019).

    [40]

    . Hilberer, A. et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy magnetometry up to 130 GPa. Phys. Rev. B 107, L220102 (2023).

    [41]

    . Bhattacharyya, P. et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73(2024).

    [42]

    . Wen, J. et al. Probing the Meissner effect in pressurized bilayer nickelate superconductors using diamond quantum sensors. arXiv: 2410, 10275 (2024).

    [43]

    . Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    [44]

    . Lyapin, S. G., Ilichev, I. D., Novikov, A. P., Davydov, V. A. & Agafonov, V. N. Study of optical properties of the NV and SiV centres in diamond at high pressures. Nanosystems: Physics, Chemistry, Mathematics 9, 55 (2018).

    [45]

    . Shang, Y.-X. et al. High-Pressure NMR Enabled by Diamond Nitrogen-Vacancy Centers. arXiv: 2203.10511 (2022).

    [46]

    . Jacques, V. et al. Dynamic Polarization of Single Nuclear Spins by Optical Pumping of Nitrogen-Vacancy Color Centers in Diamond at Room Temperature. Phys. Rev. Lett. 102, 57403 (2009).

    [47]

    . London, P. et al. Detecting and polarizing nuclear spins with double resonance on a single electron spin. Phys. Rev. Lett. 111, 067601 (2013).

    [48]

    . Liu, G. Q. et al. Protection of centre spin coherence by dynamic nuclear spin polarization in diamond. Nanoscale 6, 10134 (2014).

    [49]

    . Zhang, G., Cheng, Y., Chou, J. P. & Gali, A. Material platforms for defect qubits and single-photon emitters. Appl. Phys. Rev. 7, 031308 (2020).

    [50]

    . Wang, J. F. et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide. Nat. Mater. 22, 489 (2023).

    [51]

    . Liu, L. et al. Coherent Control and Magnetic Detection of Divacancy Spins in Silicon Carbide at High Pressures. Nano Lett. 22, 9943 (2022).

    [52]

    . He, G. et al. Probing Stress and Magnetism at High Pressures with Two-Dimensional Quantum Sensors. arXiv:2501.03319 (2025).

    [53]

    . Zhong, C. et al. High Spatial Resolution 2D Imaging of Current Density and Pressure for Graphene Devices under High Pressure Using Nitrogen-Vacancy Centers in Diamond. Nano Lett. 24, 4993 (2024).

    [54]

    . Mao, H. K. Pressure-induced hydrogen-dominant high-temperature superconductors. Natl. Sci. Rev. 11, nwae004 (2024).

    [55]

    . Eremets, M. I. The current status and future development of high-temperature conventional superconductivity. Natl. Sci. Rev. 11, nwae047 (2024).

    [56]

    . Hamlin, J. J. Superconductivity near room temperature. Nature 569, 491 (2019).

    [57]

    . Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493 (2023).

    [58]

    . Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579 (2024).

    [59]

    . Zhou, Y. et al. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7. arXiv:2311.12361 (2023).

  • [1] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统. 物理学报, doi: 10.7498/aps.74.20250322
    [2] 代雪峰, 贡同. 铁磁性电极条件下T形双量子点结构中马约拉纳束缚态的解耦现象. 物理学报, doi: 10.7498/aps.73.20231434
    [3] 郭琳琳, 赵梓彤, 隋明宏, 王鹏, 刘冰冰. 限域条件下氮分子的高温高压诱导聚合. 物理学报, doi: 10.7498/aps.73.20240173
    [4] 曾启昱, 陈博, 康冬冬, 戴佳钰. 大规模、量子精度的分子动力学模拟: 以极端条件液态铁为例. 物理学报, doi: 10.7498/aps.72.20231258
    [5] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, doi: 10.7498/aps.72.20221582
    [6] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, doi: 10.7498/aps.71.20220124
    [7] 郭雨怡, 石富坤, 王群, 季振宇, 庄杰. 高压纳秒脉冲电场的细胞器生物电效应综述. 物理学报, doi: 10.7498/aps.71.20211850
    [8] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, doi: 10.7498/aps.71.20211348
    [9] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, doi: 10.7498/aps.71.20211822
    [10] 刘刚钦. 极端条件下的金刚石自旋量子传感. 物理学报, doi: 10.7498/aps.71.20212072
    [11] 张若舟, 秦明阳, 张露, 尤立星, 董超, 沙鹏, 袁洁, 金魁. 超导薄膜磁场穿透深度的双线圈互感测量. 物理学报, doi: 10.7498/aps.69.20191758
    [12] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, doi: 10.7498/aps.67.20172634
    [13] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, doi: 10.7498/aps.67.20180788
    [14] 陈传廷, 姚钢, 段明超, 管丹丹, 李耀义, 郑浩, 王世勇, 刘灿华, 贾金锋. 表面吸附K原子的多层FeSe/SrTiO3(001)薄膜的抗磁响应的原位测量. 物理学报, doi: 10.7498/aps.67.20181522
    [15] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控. 物理学报, doi: 10.7498/aps.67.20180755
    [16] 郑军, 李春雷, 杨曦, 郭永. 四端双量子点系统中的自旋和电荷能斯特效应. 物理学报, doi: 10.7498/aps.66.097302
    [17] 黄晓丽, 王鑫, 刘明坤, 梁永福, 刘冰冰, 崔田. 极端条件下物质磁性的原位测量. 物理学报, doi: 10.7498/aps.66.037403
    [18] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, doi: 10.7498/aps.64.210201
    [19] 谷 娟, 梁九卿. 施主中心量子点能谱分析. 物理学报, doi: 10.7498/aps.54.5335
    [20] 王瑞峰. A-B效应的动力学机制及其实验验证方案. 物理学报, doi: 10.7498/aps.54.4532
计量
  • 文章访问数:  38
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-17

/

返回文章
返回