搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极端条件下物质磁性的原位测量

黄晓丽 王鑫 刘明坤 梁永福 刘冰冰 崔田

引用本文:
Citation:

极端条件下物质磁性的原位测量

黄晓丽, 王鑫, 刘明坤, 梁永福, 刘冰冰, 崔田

In-situ magnetic measurements of substances under extreme conditions

Huang Xiao-Li, Wang Xin, Liu Ming-Kun, Liang Yong-Fu, Liu Bing-Bing, Cui Tian
PDF
导出引用
  • 温度和压力均是决定物质存在状态的基本热力学要素.低温和高压是现代科学实验最重要的极端条件,为物理、化学、材料和生物等多学科研究提供了新途径,对于发现和认识新现象、揭示新规律具有重要作用.极端条件下物质的磁性研究是极端条件研究的重要分支,不仅给出了物质在极端条件下的磁性变化,而且是研究高温超导体的重要手段.本文阐述了高压下物质磁化率和超导转变温度测量的原理和方法,并简要介绍了设计、搭建的低温高压下物质磁性原位测量系统.利用此系统测量了铁在高压下的磁性转变以及钇钡铜氧样品在高压下的超导转变温度.
    Temperature and pressure are the two most important thermodynamic elements, which determine the existent state of substance. Low temperature and high pressure are significant and key extreme conditions in the modern experimental science, providing new routes for many subjects such as physics, chemistry, materials and biology, and playing an important role in finding new phenomena. The magnetic research under extreme conditions is an important branch of the study of the extreme conditions, which not only presents the magnetic changes of the material under extreme conditions, but also is an important means to explore the high temperature superconductors. In this article, we elaborate the principle and method of measuring the magnetic susceptibility and superconducting transition temperature under high pressure. The in-situ magnetic measurement system under high pressure and low temperature is also briefly introduced, designed and installed by ourselves. Using the in-situ magnetic measurement system, the magnetic transition of iron and the superconducting transition temperature of the yttrium barium copper oxide sample under high pressure are measured.
      通信作者: 崔田, cuitian@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504127,51572108,51632002,11634004,11274137,11474127)、教育部长江学者和创新团队发展计划(批准号:IRT_15R23)、国家自然科学基金国家基础科学人才培养基金(批准号:J1103202)和中国博士后科学基金(批准号:2015M570265)资助的课题.
      Corresponding author: Cui Tian, cuitian@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504127, 51572108, 51632002, 11634004, 11274137, 11474127), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_15R23), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103202), and the China Postdoctoral Science Foundation (Grant No. 2015M570265).
    [1]

    Bednorz J G, Mller K A 1986 Z. Physik B 64 189

    [2]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [3]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [4]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [5]

    Wu G, Xie Y L, Chen H, Zhong M, Liu R H, Shi B C, Li Q J, Wang X F, Wu T, Yan Y J, Ying J J, Chen X H 2009 J. Phys.-Condens. Matter 21 142203

    [6]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [7]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [8]

    Tateiwa N, Haga Y, Matsuda T D, Fisk Z, Ikeda S, Kobayashi H 2013 Rev. Sci. Instrum. 84 046105

    [9]

    Tateiwa N, Haga Y, Fisk Z, Onuki Y 2011 Rev. Sci. Instrum. 82 053906

    [10]

    Alireza P L, Julian S R 2003 Rev. Sci. Instrum. 74 4728

    [11]

    Jackson D D, Aracne-Ruddle C, Malba V, Weir S T, Catledge S A, Vohra Y K 2003 Rev. Sci. Instrum. 74 2467

    [12]

    Kim C C, Reeves M E, Osofsky M S, Skelton E F 1994 Rev. Sci. Instrum. 65 992

    [13]

    Struzhkin V V, Timofeev Y A, Hemley R J, Mao H K 1997 Phys. Rev. Lett. 79 4262

    [14]

    Timofeev Y A, Mao H K, Struzhkin V V, Hemley R J 1999 Rev. Sci. Instrum. 70 4059

    [15]

    Timofeev Y A, Struzhkin V V, Hemley R J, Mao H K, Gregoryanz E A 2002 Rev. Sci. Instrum. 73 371

    [16]

    Yu Y, Zhai G J, Jin C Q 2009 Chin. Phys. Lett. 26 026201

    [17]

    Gilder S A, Legoff M, Peyronneau J, Chervin J C 2002 Geophys. Res. Lett. 29 30

    [18]

    Gilder S A, Legoff M, Chervin J C, Peyronneau J 2004 Geophys. Res. Lett. 31 L10612

    [19]

    Bi W 2011 Ph. D. Dissertation (St. Louis:Washington University)

    [20]

    Huang X, Wang X, Duan D, Sundqvist B, Li X, Huang Y, Li F, Zhou Q, Liu B, Cui T 2016 arXiv:1610.02630[cond-mat.supr-con]

    [21]

    Taylor R D, Pasternak M P, Jeanloz R 1991 J. Appl. Phys. 69 6126

    [22]

    Baudelet F, Pascarelli S, Mathon O, Itié J P, Polian A, D'Astuto M, Chervin J C 2005 J. Phys.-Condens. Matter 17 S957

    [23]

    Wei Q, Gilder S A 2013 Geophys. Res. Lett. 40 5131

    [24]

    Wang X, Hu T L, Han B, Jin H C, Li Y, Zhou Q, Zhang T 2014 Chin. Phys. B 23 070701

    [25]

    Wu M K, Ashburn J, Torng C J 1987 Phys. Rev. Lett. 58 908

    [26]

    Struzhkin V V 2016 Science 351 1260

  • [1]

    Bednorz J G, Mller K A 1986 Z. Physik B 64 189

    [2]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [3]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [4]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [5]

    Wu G, Xie Y L, Chen H, Zhong M, Liu R H, Shi B C, Li Q J, Wang X F, Wu T, Yan Y J, Ying J J, Chen X H 2009 J. Phys.-Condens. Matter 21 142203

    [6]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [7]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [8]

    Tateiwa N, Haga Y, Matsuda T D, Fisk Z, Ikeda S, Kobayashi H 2013 Rev. Sci. Instrum. 84 046105

    [9]

    Tateiwa N, Haga Y, Fisk Z, Onuki Y 2011 Rev. Sci. Instrum. 82 053906

    [10]

    Alireza P L, Julian S R 2003 Rev. Sci. Instrum. 74 4728

    [11]

    Jackson D D, Aracne-Ruddle C, Malba V, Weir S T, Catledge S A, Vohra Y K 2003 Rev. Sci. Instrum. 74 2467

    [12]

    Kim C C, Reeves M E, Osofsky M S, Skelton E F 1994 Rev. Sci. Instrum. 65 992

    [13]

    Struzhkin V V, Timofeev Y A, Hemley R J, Mao H K 1997 Phys. Rev. Lett. 79 4262

    [14]

    Timofeev Y A, Mao H K, Struzhkin V V, Hemley R J 1999 Rev. Sci. Instrum. 70 4059

    [15]

    Timofeev Y A, Struzhkin V V, Hemley R J, Mao H K, Gregoryanz E A 2002 Rev. Sci. Instrum. 73 371

    [16]

    Yu Y, Zhai G J, Jin C Q 2009 Chin. Phys. Lett. 26 026201

    [17]

    Gilder S A, Legoff M, Peyronneau J, Chervin J C 2002 Geophys. Res. Lett. 29 30

    [18]

    Gilder S A, Legoff M, Chervin J C, Peyronneau J 2004 Geophys. Res. Lett. 31 L10612

    [19]

    Bi W 2011 Ph. D. Dissertation (St. Louis:Washington University)

    [20]

    Huang X, Wang X, Duan D, Sundqvist B, Li X, Huang Y, Li F, Zhou Q, Liu B, Cui T 2016 arXiv:1610.02630[cond-mat.supr-con]

    [21]

    Taylor R D, Pasternak M P, Jeanloz R 1991 J. Appl. Phys. 69 6126

    [22]

    Baudelet F, Pascarelli S, Mathon O, Itié J P, Polian A, D'Astuto M, Chervin J C 2005 J. Phys.-Condens. Matter 17 S957

    [23]

    Wei Q, Gilder S A 2013 Geophys. Res. Lett. 40 5131

    [24]

    Wang X, Hu T L, Han B, Jin H C, Li Y, Zhou Q, Zhang T 2014 Chin. Phys. B 23 070701

    [25]

    Wu M K, Ashburn J, Torng C J 1987 Phys. Rev. Lett. 58 908

    [26]

    Struzhkin V V 2016 Science 351 1260

  • [1] 李永恺, 刘锦锦, 张鑫, 朱鹏, 杨柳, 张钰琪, 吴黄宇, 王秩伟. Kagome超导体AV3Sb5 (A = K, Rb, Cs)的掺杂效应. 物理学报, 2024, 73(6): 067401. doi: 10.7498/aps.73.20231954
    [2] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [3] 郭静, 吴奇, 孙力玲. 抵御大变形超导体的发现. 物理学报, 2023, 72(23): 237401. doi: 10.7498/aps.72.20231341
    [4] 曾启昱, 陈博, 康冬冬, 戴佳钰. 大规模、量子精度的分子动力学模拟: 以极端条件液态铁为例. 物理学报, 2023, 72(18): 187102. doi: 10.7498/aps.72.20231258
    [5] 刘刚钦. 极端条件下的金刚石自旋量子传感. 物理学报, 2022, 71(6): 066101. doi: 10.7498/aps.71.20212072
    [6] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展. 物理学报, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [7] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [8] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [9] 高淼, 孔鑫, 卢仲毅, 向涛. Li2C2中电声耦合及超导电性的第一性原理计算研究. 物理学报, 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [10] 王玮, 尹新国. 铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究. 物理学报, 2014, 63(9): 097401. doi: 10.7498/aps.63.097401
    [11] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性. 物理学报, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [12] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化. 物理学报, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [13] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究. 物理学报, 2010, 59(1): 583-586. doi: 10.7498/aps.59.583
    [14] 祖 敏, 张鹰子, 闻海虎. 薄膜厚度对La1.85Sr0.15CuO4薄膜结构和超导电性的影响. 物理学报, 2008, 57(11): 7257-7261. doi: 10.7498/aps.57.7257
    [15] 舒华兵, 刘 甦, 马 荣, 刘 楣. 第一性原理计算MgB2薄膜拉伸对超导电性的影响. 物理学报, 2007, 56(12): 7262-7265. doi: 10.7498/aps.56.7262
    [16] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性. 物理学报, 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
    [17] 马 荣, 张加宏, 杜锦丽, 刘 甦, 刘 楣. 新超导体MgCNi3的虚晶掺杂研究. 物理学报, 2006, 55(12): 6580-6584. doi: 10.7498/aps.55.6580
    [18] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究. 物理学报, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [20] 陈志谦, 郑仁蓉. 金属小粒子不同自旋态超导电性统计系综研究. 物理学报, 2002, 51(7): 1604-1607. doi: 10.7498/aps.51.1604
计量
  • 文章访问数:  5092
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-26
  • 修回日期:  2017-01-13
  • 刊出日期:  2017-02-05

/

返回文章
返回