搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极端条件下的金刚石自旋量子传感

刘刚钦

引用本文:
Citation:

极端条件下的金刚石自旋量子传感

刘刚钦

Diamond spin quantum sensing under extreme conditions

Liu Gang-Qin
PDF
HTML
导出引用
  • 极低温、高压强、强磁场等极端条件是发现和调控新奇物态的重要途径. 为了能在极端条件下实现灵敏的物性测量, 需要发展先进的传感探测方案. 基于金刚石氮空位中心的自旋量子传感可实现磁学、电学、力学、热学等物理参数的灵敏测量, 而且拥有微纳尺度的空间分辨率和极其宽泛的工作区间, 有望成为极端条件下灵敏物性测量的重要工具. 本文主要介绍低温、高温、零场、强磁场以及高压强等极端条件下金刚石氮空位中心的光学性质和自旋相干性质, 探讨极端条件下金刚石自旋量子传感所面临的机遇和挑战. 本文也包含自旋量子传感的基础知识和极端条件下量子传感应用进展.
    Extreme conditions, such as ultra-low temperatures, high pressures, and strong magnetic fields, are critical to producing and studying exotic states of matter. To measure physical properties under extreme conditions, the advanced sensing schemes are required. As a promising quantum sensor, the diamond nitrogen-vacancy (NV) center can detect magnetic field, electronic field, pressure, and temperature with high sensitivity. Considering its nanoscale spatial resolution and ultra-wide working range, the diamond quantum sensing can play an important role in frontier studies involving extreme conditions. This paper reviews the spin and optical properties of diamond NV center under extreme conditions, including low temperature, high temperature, zero field, strong magnetic fields, and high pressures. The opportunities and challenges of diamond quantum sensing under extreme conditions are discussed. The basic knowledge of spin-based quantum sensing and its applications under extreme conditions are also covered.
      通信作者: 刘刚钦, gqliu@iphy.ac.cn
    • 基金项目: 北京市自然科学基金(批准号: Z200009)、中国科学院(批准号: YJKYYQ20190082, XDB28030000)、国家自然科学基金(批准号: 11974020, 12022509, 11934018, T2121001)和国家重点研发计划(批准号: 2019YFA0308100)资助的课题.
      Corresponding author: Liu Gang-Qin, gqliu@iphy.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. Z200009), Chinese Academy of Sciences (Grant Nos. YJKYYQ20190082, XDB28030000), the National Natural Science Foundation of China (Grant Nos. 11974020, 12022509, 11934018, T2121001), and the National Key Research and Development Program of China (Grants No. 2019YFA0308100).
    [1]

    Norman M R 2011 Science 332 196Google Scholar

    [2]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar

    [3]

    Sachdev S, Keimer B 2011 Phys. Today 64 29Google Scholar

    [4]

    Coleman P, Schofield A J 2005 Nature 433 226Google Scholar

    [5]

    Hao N, Hu J 2019 Natl. Sci. Rev. 6 213Google Scholar

    [6]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [7]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [8]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [9]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Reports Prog. Phys. 77 056503Google Scholar

    [10]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [11]

    Degen C L, Reinhard F, Cappellaro P 2017 Quantum sensing Rev. Mod. Phys. 89 035002Google Scholar

    [12]

    Casola F, Van Der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088Google Scholar

    [13]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [14]

    Zhao N, Hu J L, Ho S W, Wan J T K, Liu R B 2011 Nat. Nanotechnol. 6 242Google Scholar

    [15]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, others 2008 Nature 455 648Google Scholar

    [16]

    Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar

    [17]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg Lloyd C L, Prawer S 2014 Phys. Rev. Lett. 112 047601Google Scholar

    [18]

    Van Oort E, Glasbeek M 1990 Chem. Phys. Lett. 168 529Google Scholar

    [19]

    Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [20]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, Borczyskowski C von 1997 Science 276 2012Google Scholar

    [21]

    Steinert S, Ziem F, Hall L T, Zappe A, Schweikert M, Götz N, Aird A, Balasubramanian G, Hollenberg L, Wrachtrup J 2013 Nat. Commun. 4 1607Google Scholar

    [22]

    Robledo L, Childress L, Bernien H, Hensen B, Alkemade P F A, Hanson R 2011 Nature 477 574Google Scholar

    [23]

    Jarmola A, Acosta V M, Jensen K, Chemerisov S, Budker D 2012 Phys. Rev. Lett. 108 197601Google Scholar

    [24]

    Abobeih M H, Cramer J, Bakker M A, Kalb N, Markham M, Twitchen D J, Taminiau T H 2018 Nat. Commun. 9 1Google Scholar

    [25]

    Astner T, Gugler J, Angerer A, Wald S, Putz S, Mauser N J, Trupke M, Sumiya H, Onoda S, Isoya J, Schmiedmayer J, Mohn P, Majer J 2018 Nat. Mater. 17 313Google Scholar

    [26]

    Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N, Semba K 2011 Nature 478 221Google Scholar

    [27]

    Toyli D M, Christle D J, Alkauskas A, Buckley B B, Van de Walle C G, Awschalom D D 2012 Phys. Rev. X 2 031001Google Scholar

    [28]

    Liu G Q, Feng X, Wang N, Li Q, Liu R B 2019 Nat. Commun. 10 1344Google Scholar

    [29]

    Zheng H, Xu J, Iwata G Z, Lenz T, Michl J, Yavkin B, Nakamura K, Sumiya H, Ohshima T, Isoya J, Wrachtrup J, Wickenbrock A, Budker D 2019 Phys. Rev. Appl. 11 064068Google Scholar

    [30]

    Vetter P J, Marshall A, Genov G T, Weiss T F, Striegler N, Großmann E F, Casado S O, Cerrillo J, Prior J, Neumann P, Jelezko F 2021 arXiv: 2107.10537[quant-ph]

    [31]

    Wang N, Liu C F, Fan J W, Feng X, Leong W H, Finkler A, Denisenko A, Wrachtrup J, Li Q, Liu R B 2022 Phys. Rev. Res. 4 013098Google Scholar

    [32]

    Epstein R J, Mendoza F M, Kato Y K, Awschalom D D 2005 Nat. Phys. 1 94Google Scholar

    [33]

    Aslam N, Pfender M, Stöhr R, Neumann P, Scheffler M, Sumiya H, Abe H, Onoda S, Ohshima T, Isoya J, Wrachtrup J 2015 Rev. Sci. Instrum. 86 064704Google Scholar

    [34]

    Fortman B, Mugica-Sanchez L, Tischler N, Selco C, Hang Y, Holczer K, Takahashi S 2021 J. Appl. Phys. 130 083901Google Scholar

    [35]

    Jayaraman A 1983 Rev. Mod. Phys. 55 65Google Scholar

    [36]

    Lyapin S G, Ilichev I D, Novikov A P, Davydov V A, Agafonov V N 2018 Nanosyst. Physics, Chem. Math. 9 55

    [37]

    Shang Y X, Hong F, Dai J H, Yu Hui, Lu Y N, Liu E K, Yu X H, Liu G Q, Pan X Y 2019 Chin. Phys. Lett. 36 086201Google Scholar

    [38]

    Steele L G, Lawson M, Onyszczak M, Bush B T, Mei Z, Dioguardi A P, King J, Parker A, Pines A, Weir S T, Evans W, Visbeck K, Vohra Y K, Curro N J 2017 Appl. Phys. Lett. 111 221903Google Scholar

    [39]

    Shang Y X, Hong F, Dai J H, Lu Y N, Yu H, Yu Y H, Yu X H, Pan X Y, Liu G Q 2022 arXiv:2203.10511[quant-ph]

    [40]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [41]

    Marchiori E, Ceccarelli L, Rossi N, Lorenzelli L, Degen C L, Poggio M 2021 Nat. Rev. Phys. 4 49Google Scholar

    [42]

    Thiel L, Rohner D, Ganzhorn M, Appel P, Neu E, Müller B, Kleiner R, Koelle D, Maletinsky P 2016 Nat. Nanotechnol. 11 677Google Scholar

    [43]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557Google Scholar

    [44]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561Google Scholar

    [45]

    Kong F, Zhao P, Ye X, Wang Z, Qin Z, Yu P, Su J, Shi F, Du J 2018 Nat. Commun. 9 1563Google Scholar

    [46]

    Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J, Meriles C A 2013 Nat. Commun. 4 1Google Scholar

    [47]

    Kong F, Zhao P, Yu P, Qin Z, Huang Z, Wang Z, Wang M, Shi F, Du J 2020 Sci. Adv. 6 8244Google Scholar

    [48]

    赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰 2021 物理学报 70 213301Google Scholar

    Zhao P J, Kong F, Li R, Shi F Z, Du J F 2021 Acta Phys. Sin. 70 213301Google Scholar

    [49]

    Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Oliveira F F de, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2017 Science 357 67Google Scholar

    [50]

    Kamarád J, Arnold Z, Schneider J 1987 J. Magn. Magn. Mater. 67 29Google Scholar

    [51]

    Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P, Roch J F 2019 Science 366 1359Google Scholar

    [52]

    Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, MacHado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R, Yao N Y 2019 Science 366 1349Google Scholar

    [53]

    Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K, Yang S 2019 Science 366 1355Google Scholar

    [54]

    Wang P, Chen C, Liu R B, Wang P, Chen C, Liu R B 2021 Chin. Phys. Lett. 38 010301Google Scholar

  • 图 1  极端条件下的金刚石自旋量子传感 (a) 作为灵敏的微纳尺度量子传感方案, 金刚石氮空位中心可在极其宽泛的温度、压强、磁场下工作; (b)典型的自旋量子传感包含量子态制备、与待测对象的相互作用、量子态读出三部分

    Fig. 1.  Diamond quantum sensing under extreme conditions. (a) As nanoscale quantum sensors, diamond nitrogen-vacancy centers can work under wide ranges of temperature, pressure, and magnetic field. (b) A typical spin-based quantum sensing process contains three parts: preparation of the quantum state, interaction between the sensor and the target, and readout of the quantum state.

    图 2  金刚石氮空位中心自旋量子传感工作原理 (a) 自旋能级结构和光学跃迁; (b) 外场对金刚石氮空位中心基态能级的影响(从上至下: 压强、温度、磁场)

    Fig. 2.  Working principle of diamond quantum sensing: (a) The energy level structure and optical transitions of a diamond NV center; (b) the energy levels of NV ground state as function of external perturbations (from top to bottom: pressure, temperature, and magnetic field).

    图 3  低温条件对金刚石氮空位中心自旋性质的影响 (a) 自旋弛豫速率随温度变化规律 [23]; (b) 3.7 K下NV中心自旋弛豫时间$ {T}_{1} $可达1 h [24]

    Fig. 3.  NV spin properties at low temperatures: (a) Spin relaxation rate as function of temperature [23]; (b) at 3.7 K, the T1 of an NV electron spin reaches 1 hour [24].

    图 4  高温下金刚石NV中心自旋量子调控[28] (a) 基于原位激光加热的快速温控; (b) 高温光探磁共振脉冲序列; (c) 零场劈裂随温度变化规律; (d) 自旋弛豫速率随温度的变化规律; (e) 高温下自旋Rabi振荡

    Fig. 4.  Quantum control of diamond NV centers under high temperatures [28]: (a) Fast temperature control by in-situ laser heating and cooling; (b) pulse sequence for high-temperature ODMR; (c) temperature dependence of zero-field splitting of NV centers; (d) temperature dependence of spin relaxation rate; (e) Rabi oscillation under high temperatures.

    图 5  零场和低磁场下金刚石自旋量子调控 (a) 零场附近基态能级简并情况[29]; (b)基于近邻强耦合13C核自旋的零场量子传感方案[31]; (c) 基于NV自旋三能级结构的零场量子传感方案[30]

    Fig. 5.  Quantum control of diamond spin under zero and low magnetic fields: (a) Energy levels of NV ground state at near zero fields[29]; (b) zero-field magnetometry using hyperfine-biased NV centers[31]; (c) zero-field quantum sensing by exploiting the spin S = 1 nature of the NV center[30].

    图 6  强磁场下的金刚石自旋量子调控[33] (a) 实验系统示意图; (b) 高频微波波导示意图; (c)共面波导传输线和金刚石装载示意; (d)金刚石近邻共面波导结构的荧光扫描图; (e) 2.78 T磁场下的单个金刚石NV中心光探磁共振谱线和(f) Rabi振荡

    Fig. 6.  Quantum control of diamond NV center under strong magnetic field [33]: (a) Experimental setup of high-field ODMR; (b) schematic of the microwave cavity resonator and (c) schematic of coplanar waveguide (CPW) transition element and diamond loading; (d) confocal image of the CPW resonator close to the diamond; (e) ODMR spectrum and (f) Rabi oscillation of an NV center at 2.78 T.

    图 7  高压下金刚石NV自旋量子调控 (a) 金刚石对顶砧中的自旋量子传感 [17]; (b)压力对金刚石NV中心基态能级的影响; (c) 不同压强下的光探磁共振谱线; (d) 零场劈裂随压强变化关系; (e)不同压强下的NV中心零声子谱线及其(f)随压强变化规律[36]; (g)—(i) 高压下的自旋Rabi振荡、自旋回波信号和自旋弛豫信号 [37]

    Fig. 7.  Quantum control of diamond NV center under high pressures: (a) Quantum sensing inside diamond anvil cell [17]; (b) energy levels of NV ground states under pressure; (c) ODMR spectra under different pressures; (d) dependence of zero-field splitting on pressures; (e) zero-phonon line and (f) its dependence on pressures [36]; (g)–(i) Rabi oscillation, spin echo, and spin relaxation of NV centers under high pressures [37].

    图 8  低温下金刚石自旋量子传感应用 (a) 7 K下二维材料CrI3的磁性成像 [40]; (b) 4.2 K下超导薄膜YBCO的磁性成像[41]

    Fig. 8.  Applications of diamond quantum sensing at low temperatures: (a) Map of magnetization distribution of a 2D material, CrI3, at temperature of 7 K [40]; (b) magnetic vortex imaging of a thin-film superconductor, YBCO, at temperature of 4.2 K[41].

    图 9  高温下金刚石自旋量子传感应用[28] (a) 不同温度下单个镍纳米颗粒近邻金刚石中集群NV的光探磁共振谱线; (b) 单个纳米颗粒磁性相变过程, 其中插图为样品扫描电子显微镜图片

    Fig. 9.  Applications of diamond quantum sensing at high temperatures [28]: (a) ODMR spectra of a nano-diamond close to a nickel nanoparticle at different temperatures; (b) the magnetic phase transition of a single nickel nanoparticle, where the insert is SEM image of the sample.

    图 10  极限磁场下的金刚石自旋量子传感应用 (a) 零场下(0.01 G) 金刚石NV自旋辅助实现的EPR谱线 [47]; (b) 强磁场(3 T)下NV自旋辅助实现的NMR谱线[49]

    Fig. 10.  Applications of diamond quantum sensing at zero and high magnetic fields: (a) Zero-field (0.01 G) EPR enabled by diamond NV center[47]; (b) NV-based NMR at 3 T [49].

    图 11  高压下金刚石自旋量子传感应用 (a)铷铁硼(NdFeB) [37]和(b)单质铁(Fe)的压强驱动磁相变测量[51,52]; (c) 高压腔内压强成像[52]; (d) BaFe2(As0.59P0.41)2超导相图 [53]; (e) 钆(Gd)磁性的压强-温度相图 [52]

    Fig. 11.  Applications of diamond quantum sensing under high pressures: (a), (b) The pressure induced magnetic phase transition of (a) NdFeB [37] and (b) Fe [51,52]; (c) pressure imaging inside diamond anvil cells[52]; (d), (e) the temperature-pressure phase diagram of (d) superconductor BaFe2(As0.59P0.41)2 [53] and (e) Gd foil [52].

  • [1]

    Norman M R 2011 Science 332 196Google Scholar

    [2]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar

    [3]

    Sachdev S, Keimer B 2011 Phys. Today 64 29Google Scholar

    [4]

    Coleman P, Schofield A J 2005 Nature 433 226Google Scholar

    [5]

    Hao N, Hu J 2019 Natl. Sci. Rev. 6 213Google Scholar

    [6]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [7]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [8]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [9]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Reports Prog. Phys. 77 056503Google Scholar

    [10]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [11]

    Degen C L, Reinhard F, Cappellaro P 2017 Quantum sensing Rev. Mod. Phys. 89 035002Google Scholar

    [12]

    Casola F, Van Der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088Google Scholar

    [13]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [14]

    Zhao N, Hu J L, Ho S W, Wan J T K, Liu R B 2011 Nat. Nanotechnol. 6 242Google Scholar

    [15]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, others 2008 Nature 455 648Google Scholar

    [16]

    Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar

    [17]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg Lloyd C L, Prawer S 2014 Phys. Rev. Lett. 112 047601Google Scholar

    [18]

    Van Oort E, Glasbeek M 1990 Chem. Phys. Lett. 168 529Google Scholar

    [19]

    Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [20]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, Borczyskowski C von 1997 Science 276 2012Google Scholar

    [21]

    Steinert S, Ziem F, Hall L T, Zappe A, Schweikert M, Götz N, Aird A, Balasubramanian G, Hollenberg L, Wrachtrup J 2013 Nat. Commun. 4 1607Google Scholar

    [22]

    Robledo L, Childress L, Bernien H, Hensen B, Alkemade P F A, Hanson R 2011 Nature 477 574Google Scholar

    [23]

    Jarmola A, Acosta V M, Jensen K, Chemerisov S, Budker D 2012 Phys. Rev. Lett. 108 197601Google Scholar

    [24]

    Abobeih M H, Cramer J, Bakker M A, Kalb N, Markham M, Twitchen D J, Taminiau T H 2018 Nat. Commun. 9 1Google Scholar

    [25]

    Astner T, Gugler J, Angerer A, Wald S, Putz S, Mauser N J, Trupke M, Sumiya H, Onoda S, Isoya J, Schmiedmayer J, Mohn P, Majer J 2018 Nat. Mater. 17 313Google Scholar

    [26]

    Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N, Semba K 2011 Nature 478 221Google Scholar

    [27]

    Toyli D M, Christle D J, Alkauskas A, Buckley B B, Van de Walle C G, Awschalom D D 2012 Phys. Rev. X 2 031001Google Scholar

    [28]

    Liu G Q, Feng X, Wang N, Li Q, Liu R B 2019 Nat. Commun. 10 1344Google Scholar

    [29]

    Zheng H, Xu J, Iwata G Z, Lenz T, Michl J, Yavkin B, Nakamura K, Sumiya H, Ohshima T, Isoya J, Wrachtrup J, Wickenbrock A, Budker D 2019 Phys. Rev. Appl. 11 064068Google Scholar

    [30]

    Vetter P J, Marshall A, Genov G T, Weiss T F, Striegler N, Großmann E F, Casado S O, Cerrillo J, Prior J, Neumann P, Jelezko F 2021 arXiv: 2107.10537[quant-ph]

    [31]

    Wang N, Liu C F, Fan J W, Feng X, Leong W H, Finkler A, Denisenko A, Wrachtrup J, Li Q, Liu R B 2022 Phys. Rev. Res. 4 013098Google Scholar

    [32]

    Epstein R J, Mendoza F M, Kato Y K, Awschalom D D 2005 Nat. Phys. 1 94Google Scholar

    [33]

    Aslam N, Pfender M, Stöhr R, Neumann P, Scheffler M, Sumiya H, Abe H, Onoda S, Ohshima T, Isoya J, Wrachtrup J 2015 Rev. Sci. Instrum. 86 064704Google Scholar

    [34]

    Fortman B, Mugica-Sanchez L, Tischler N, Selco C, Hang Y, Holczer K, Takahashi S 2021 J. Appl. Phys. 130 083901Google Scholar

    [35]

    Jayaraman A 1983 Rev. Mod. Phys. 55 65Google Scholar

    [36]

    Lyapin S G, Ilichev I D, Novikov A P, Davydov V A, Agafonov V N 2018 Nanosyst. Physics, Chem. Math. 9 55

    [37]

    Shang Y X, Hong F, Dai J H, Yu Hui, Lu Y N, Liu E K, Yu X H, Liu G Q, Pan X Y 2019 Chin. Phys. Lett. 36 086201Google Scholar

    [38]

    Steele L G, Lawson M, Onyszczak M, Bush B T, Mei Z, Dioguardi A P, King J, Parker A, Pines A, Weir S T, Evans W, Visbeck K, Vohra Y K, Curro N J 2017 Appl. Phys. Lett. 111 221903Google Scholar

    [39]

    Shang Y X, Hong F, Dai J H, Lu Y N, Yu H, Yu Y H, Yu X H, Pan X Y, Liu G Q 2022 arXiv:2203.10511[quant-ph]

    [40]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [41]

    Marchiori E, Ceccarelli L, Rossi N, Lorenzelli L, Degen C L, Poggio M 2021 Nat. Rev. Phys. 4 49Google Scholar

    [42]

    Thiel L, Rohner D, Ganzhorn M, Appel P, Neu E, Müller B, Kleiner R, Koelle D, Maletinsky P 2016 Nat. Nanotechnol. 11 677Google Scholar

    [43]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557Google Scholar

    [44]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561Google Scholar

    [45]

    Kong F, Zhao P, Ye X, Wang Z, Qin Z, Yu P, Su J, Shi F, Du J 2018 Nat. Commun. 9 1563Google Scholar

    [46]

    Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J, Meriles C A 2013 Nat. Commun. 4 1Google Scholar

    [47]

    Kong F, Zhao P, Yu P, Qin Z, Huang Z, Wang Z, Wang M, Shi F, Du J 2020 Sci. Adv. 6 8244Google Scholar

    [48]

    赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰 2021 物理学报 70 213301Google Scholar

    Zhao P J, Kong F, Li R, Shi F Z, Du J F 2021 Acta Phys. Sin. 70 213301Google Scholar

    [49]

    Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Oliveira F F de, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2017 Science 357 67Google Scholar

    [50]

    Kamarád J, Arnold Z, Schneider J 1987 J. Magn. Magn. Mater. 67 29Google Scholar

    [51]

    Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P, Roch J F 2019 Science 366 1359Google Scholar

    [52]

    Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, MacHado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R, Yao N Y 2019 Science 366 1349Google Scholar

    [53]

    Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K, Yang S 2019 Science 366 1355Google Scholar

    [54]

    Wang P, Chen C, Liu R B, Wang P, Chen C, Liu R B 2021 Chin. Phys. Lett. 38 010301Google Scholar

  • [1] 代雪峰, 贡同. 铁磁性电极条件下T形双量子点结构中马约拉纳束缚态的解耦现象. 物理学报, 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [2] 极端条件原子分子动力学专题编者按. 物理学报, 2024, 73(24): 240101. doi: 10.7498/aps.73.240101
    [3] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变. 物理学报, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [4] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [5] 曾启昱, 陈博, 康冬冬, 戴佳钰. 大规模、量子精度的分子动力学模拟: 以极端条件液态铁为例. 物理学报, 2023, 72(18): 187102. doi: 10.7498/aps.72.20231258
    [6] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [7] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [8] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [9] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [10] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控. 物理学报, 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [11] 黄晓丽, 王鑫, 刘明坤, 梁永福, 刘冰冰, 崔田. 极端条件下物质磁性的原位测量. 物理学报, 2017, 66(3): 037403. doi: 10.7498/aps.66.037403
    [12] 胡翠娥, 曾召益, 蔡灵仓. 极端条件下锆的动力学稳定性研究. 物理学报, 2015, 64(4): 046401. doi: 10.7498/aps.64.046401
    [13] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [14] 李敏, 尼启良, 陈波. 极端紫外波段碱卤化物光阴极材料量子效率计算. 物理学报, 2009, 58(10): 6894-6901. doi: 10.7498/aps.58.6894
    [15] 张松俊, 蒋建军, 刘拥军. 阻挫诱导的亚铁磁性Heisenberg系统中的量子相变. 物理学报, 2008, 57(1): 531-534. doi: 10.7498/aps.57.531
    [16] 张德兴. 量子条件振幅算子性质的研究. 物理学报, 2004, 53(6): 1647-1651. doi: 10.7498/aps.53.1647
    [17] 李景德, 陈 敏, 方传代, 李智强, 雷德铭. 极性相变的介电谱研究. 物理学报, 1999, 48(4): 721-728. doi: 10.7498/aps.48.721
    [18] 朱栋培, 王仁川, 杨理. Lund模型和极端相对论系统的量子能谱. 物理学报, 1996, 45(2): 185-191. doi: 10.7498/aps.45.185
    [19] 王积方, 王汝菊, M. H. MANGHNANI, 熊大和. CoO磁性相变中的弹性性质. 物理学报, 1991, 40(12): 1966-1972. doi: 10.7498/aps.40.1966
    [20] 热压铁氧体的制备条件和磁性. 物理学报, 1974, 23(6): 1-12. doi: 10.7498/aps.23.1-3
计量
  • 文章访问数:  8354
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2022-03-04
  • 上网日期:  2022-03-09
  • 刊出日期:  2022-03-20

/

返回文章
返回