搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极端条件下锆的动力学稳定性研究

胡翠娥 曾召益 蔡灵仓

引用本文:
Citation:

极端条件下锆的动力学稳定性研究

胡翠娥, 曾召益, 蔡灵仓

Dynamic stability of Zr under high pressure and high temperature

Hu Cui-E, Zeng Zhao-Yi, Cai Ling-Cang
PDF
导出引用
  • 过渡金属Zr具有优良的物理、化学及力学性能, 具有广泛的应用价值. 主要通过新近发展的自洽晶格动力学方法, 充分考虑声子间的相互作用, 成功获得了β-Zr的高温高压声子色散曲线, 预测了β-Zr在相图中能够稳定存在的区域, 进一步比较α-Zr, ω-Zr和β-Zr的自由能, 获得了α-β 及ω-β 相变的相边界, 构建了Zr的参考相图. 同时, 也获得了β-Zr的高温状态方程及热膨胀系数, 能够为构建Zr的全区物态方程提供有益的参考.
    The phase transitions and structure stabilities of materials have always attracted much attention of the experimental and theoretical investigators. When calculating the phonon dispersion of the cubic structure of the transition metal Zr (β -Zr), the traditional methods always give the negative phonon frequencies. So the quasi-harmonic approximation cannot solve this kind of problem. We obtain the phonon dispersion of β -Zr at high pressure and high temperature by using the newly developed self-consistent ab initio lattice dynamics method, which can well consider the phonon-phonon interactions. And then the stable region of β -Zr in the high pressure and high temperature phase diagram is predicted. The full phase diagram of Zr is also predicted. We also obtain the high temperature equation of state (EOS) and thermal expansion of β -Zr, which can help to construct the EOS data base of Zr.
    • 基金项目: 国家自然科学基金(批准号: 11304408, 11347019)、国家自然科学基金委员会与中国工程物理研究院联合基金(批准号: U1230201)、重庆市自然科学基金(批准号: cstc2012jjA50019, cstc2013jcyjA0733)和中国博士后科学基金(批准号: 2014M552380, 2014M552541XB)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304408, 11347019), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1230201), the Natural Science Foundation of Chongqing City, China (Grant Nos. cstc2012jjA50019, cstc2013jcyjA0733), and the China Postdoctoral Science Foundation (Grant Nos. 2014M552380, 2014M552541XB).
    [1]

    Akahama Y, Kobayashi M, Kawamura H 1991 J. Phys. Soc. Jpn. 60 3211

    [2]

    Olinger B, Jamieson J C 1973 High Temp. -High Press. 5 123

    [3]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [4]

    Young D A 1991 Phase Diagrams of the Elements (Berkeley: University of California Press) p171

    [5]

    Trubitsin V Y 2006 Phys. Rev. B 73 214302

    [6]

    Vohra Y K, Sikka S K, Chidambaram R 1979 J. Phys. F 9 1771

    [7]

    Zhang J, Zhao Y, Pantea C, Qian J, Daemen L L, Rigg P A, Hixson R S, Greeff C W, Gray G T, Yang Y, Wang L, Wang Y, Uchida T 2005 J. Phys. Chem. Solids 66 1213

    [8]

    Zhao Y, Zhang J, Pantea C, Qian J, Daemen L L, Rigg P A, Hixson R S, Gray G T, Yang Y, Wang L, Wang Y, Uchida T 2005 Phys. Rev. B 71 184119

    [9]

    Hao Y J, Zhang L, Chen X R, Cai L C, Wu Q, Alfè D 2008 Phys. Rev. B 78 134101

    [10]

    Hu C E, Zeng Z Y, Zhang L, Chen X R, Cai L C 2011 Comp. Mater. Sci. 50 835

    [11]

    Yuan P F, Zhu W J, Xu J A, Jing F Q 2010 Acta Phys. Sin. 59 8755 (in Chinese) [原鹏飞, 祝文军, 徐济安, 经福谦 2010 物理学报 59 8755]

    [12]

    Zhou D W, Lu C, Li G Q, Song J F, Song Y L, Bao G 2012 Acta Phys. Sin. 61 146301 (in Chinese) [周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚 2012 物理学报 61 146301]

    [13]

    Chen D 2013 Chin. Phys. B 22 126301

    [14]

    Liu X K, Liu C, Zheng Z, Lan X H 2013 Chin. Phys. B 22 087102

    [15]

    Souvatzis P, Eriksson O, Katsnelson M I, Rudin S P 2008 Phys. Rev. Lett. 100 095901

    [16]

    Souvatzis P, Legut D, Eriksson O, Katsnelson M I 2010 Phys. Rev. B 81 092201

    [17]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063

    [18]

    Birch F 1986 J. Geophys. Res. 91 4949

    [19]

    Ostanin S A, Trubitsin V Y 1997 Phys. Solid State 39 1727

    [20]

    Stassis C, Zarestky J, Arch D, McMasters O D, Harmon B N 1978 Phys. Rev. B 18 2632

    [21]

    Heiming A, Petry W, Trampenau J, Alba M, Herzig C, Schober H R, Vogl G 1991 Phys. Rev. B 43 10948

    [22]

    Heiming A, Petry W, Trampenau J, Alba M, Herzig C, Vogl G 1989 Phys. Rev. B 40 11425

    [23]

    Greeff C W 2005 Model. Simul. Mater. Sci. Eng. 13 1015

    [24]

    Rigg P A, Saavedra R A, Schar R J 2014 J. Phys.: Conf. Ser. 500 032014

  • [1]

    Akahama Y, Kobayashi M, Kawamura H 1991 J. Phys. Soc. Jpn. 60 3211

    [2]

    Olinger B, Jamieson J C 1973 High Temp. -High Press. 5 123

    [3]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [4]

    Young D A 1991 Phase Diagrams of the Elements (Berkeley: University of California Press) p171

    [5]

    Trubitsin V Y 2006 Phys. Rev. B 73 214302

    [6]

    Vohra Y K, Sikka S K, Chidambaram R 1979 J. Phys. F 9 1771

    [7]

    Zhang J, Zhao Y, Pantea C, Qian J, Daemen L L, Rigg P A, Hixson R S, Greeff C W, Gray G T, Yang Y, Wang L, Wang Y, Uchida T 2005 J. Phys. Chem. Solids 66 1213

    [8]

    Zhao Y, Zhang J, Pantea C, Qian J, Daemen L L, Rigg P A, Hixson R S, Gray G T, Yang Y, Wang L, Wang Y, Uchida T 2005 Phys. Rev. B 71 184119

    [9]

    Hao Y J, Zhang L, Chen X R, Cai L C, Wu Q, Alfè D 2008 Phys. Rev. B 78 134101

    [10]

    Hu C E, Zeng Z Y, Zhang L, Chen X R, Cai L C 2011 Comp. Mater. Sci. 50 835

    [11]

    Yuan P F, Zhu W J, Xu J A, Jing F Q 2010 Acta Phys. Sin. 59 8755 (in Chinese) [原鹏飞, 祝文军, 徐济安, 经福谦 2010 物理学报 59 8755]

    [12]

    Zhou D W, Lu C, Li G Q, Song J F, Song Y L, Bao G 2012 Acta Phys. Sin. 61 146301 (in Chinese) [周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚 2012 物理学报 61 146301]

    [13]

    Chen D 2013 Chin. Phys. B 22 126301

    [14]

    Liu X K, Liu C, Zheng Z, Lan X H 2013 Chin. Phys. B 22 087102

    [15]

    Souvatzis P, Eriksson O, Katsnelson M I, Rudin S P 2008 Phys. Rev. Lett. 100 095901

    [16]

    Souvatzis P, Legut D, Eriksson O, Katsnelson M I 2010 Phys. Rev. B 81 092201

    [17]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063

    [18]

    Birch F 1986 J. Geophys. Res. 91 4949

    [19]

    Ostanin S A, Trubitsin V Y 1997 Phys. Solid State 39 1727

    [20]

    Stassis C, Zarestky J, Arch D, McMasters O D, Harmon B N 1978 Phys. Rev. B 18 2632

    [21]

    Heiming A, Petry W, Trampenau J, Alba M, Herzig C, Schober H R, Vogl G 1991 Phys. Rev. B 43 10948

    [22]

    Heiming A, Petry W, Trampenau J, Alba M, Herzig C, Vogl G 1989 Phys. Rev. B 40 11425

    [23]

    Greeff C W 2005 Model. Simul. Mater. Sci. Eng. 13 1015

    [24]

    Rigg P A, Saavedra R A, Schar R J 2014 J. Phys.: Conf. Ser. 500 032014

计量
  • 文章访问数:  2085
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-29
  • 修回日期:  2014-09-15
  • 刊出日期:  2015-02-05

极端条件下锆的动力学稳定性研究

  • 1. 重庆师范大学物理与电子工程学院, 重庆 400047;
  • 2. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理国防科技重点实验室, 绵阳 621900
    基金项目: 

    国家自然科学基金(批准号: 11304408, 11347019)、国家自然科学基金委员会与中国工程物理研究院联合基金(批准号: U1230201)、重庆市自然科学基金(批准号: cstc2012jjA50019, cstc2013jcyjA0733)和中国博士后科学基金(批准号: 2014M552380, 2014M552541XB)资助的课题.

摘要: 过渡金属Zr具有优良的物理、化学及力学性能, 具有广泛的应用价值. 主要通过新近发展的自洽晶格动力学方法, 充分考虑声子间的相互作用, 成功获得了β-Zr的高温高压声子色散曲线, 预测了β-Zr在相图中能够稳定存在的区域, 进一步比较α-Zr, ω-Zr和β-Zr的自由能, 获得了α-β 及ω-β 相变的相边界, 构建了Zr的参考相图. 同时, 也获得了β-Zr的高温状态方程及热膨胀系数, 能够为构建Zr的全区物态方程提供有益的参考.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回