-
为了探求过渡金属催化剂对催化合成储氢材料NaAlH4效果的影响, 本文采用第一性原理方法研究了多种金属原子取代Al (111)表面铝原子形成的合金表面对氢的催化分解的影响. 计算结果表明, Sc, V, Fe, Ti原子掺杂的表面对氢分子分解具有催化作用. H2在对应的掺杂表面催化分解所需要的活化能分别为0.54 eV, 0.29 eV, 0.51 eV, 0.12 eV. H原子在Sc, V, Ti掺杂表面扩散需要的活化能分别为0.51 eV, 0.66 eV, 0.57 eV. 同时, 过渡金属掺杂在Al表面时倾向于分散分布, 增加掺杂表面的掺杂原子个数, 掺杂表面的催化效果体现为单个掺杂过渡金属原子的催化效果. 本研究将为金属掺杂Al (111)表面催化加氢合成NaAlH4提供理论参考.
-
关键词:
- 掺杂Al(111)表面 /
- 第一性原理 /
- 催化加氢 /
- 过渡金属
To investigate the catalytic activity of transition metals in hydrogenation process, the density-functional method has been performed to study the hydrogen interaction with metal-doped Al (111) surfaces. Results indicate that Al (111) surfaces doped with Sc, V, Fe, or Ti atom can effectively enhance hydrogenation reaction. H2 dissociation barriers on Sc, V, Fe and Ti doped surfaces are 0.54 eV, 0.29 eV, 0.12 eV, and 0.51 eV respectively, while diffusion barrier for H atom away from the Sc, V, and Ti doped surfaces are 0.51 eV, 0.66 eV, and 0.57 eV correspondently. Especially, V doped Al (111) surface has shown an amazing catalytic hydrogenation performance for the lower activating energy and diffusion barrier. Moreover, the metal atoms tend to be uniformly distributed on the Al (111) surface. And increasing the number of doping metal atoms, the catalytic performance are similar to that of the isolated transition metal atom doped Al (111) surface. This research may provide a reference to study the metal activity of hydrogen reuptake for NaAlH4.[1] Schlapbach L, Zttel A 2001 Nature 414 353
[2] Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741
[3] Wu M, Wang Q, Sun Q, Jena P 2013 J. Phys. Chem. C 117 6055
[4] Yildirim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501
[5] Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z 2008 Phys. Rev. Lett. 100 206806
[6] Mauron P, Gaboardi M, Remhof A, Bliersbach A, Sheptyakov D, Aramini M, Vlahopoulou G, Giglio F, Pontiroli D, Ricco? M, Zttel A 2013 J. Phys. Chem. C 117 22598
[7] Sano N, Taniguchi K, Tamon H 2014 J. Phys. Chem. C 118(7) 3402
[8] Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 物理学报 62 137301]
[9] Orimo S, Nakamori Y, Eliseo J R, Zttel A, Jensen C M 2007 Chem. Rev. 107 4111
[10] Liu X, McGrady G S, Langmi H W, Jensen C M 2009 J. Am. Chem. Soc. 131 5032
[11] Liu Y, Liang C, Zhou H, Gao M, Pan H, Wang Q 2011 Chem. Commun. 47 1740
[12] Zhang H, Xiao M Z, Zhang G Y, Lu G X, Zhu S L 2011 Acta. Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 物理学报 60 026103]
[13] Zhang H, Liu G L, Qi K Z, Zhang G Y, Xiao M Z, Zhu S L 2010 Chin. Phys. B 19 048601
[14] Li R, Luo X L, Liang G M, Fu W S 2011 Acta. Phys. Sin. 60 117105 (in Chinese) [李荣, 罗小玲, 梁国明, 付文升 2011 物理学报 60 117105]
[15] Bhihi M, Lakhal M, Labrim H, Benyoussef A, El Kenz A, Mounkachi O, Hlil E K 2012 Chin. Phys. B 21 097501
[16] Lozano G A, Ranong C N, Bellosta von Colbe J M, Bormann R, Hapke J, Fieg G, Klassen T, Dornheim M 2012 Int. J. Hydrogen Energy 37 2825
[17] Bogdanović B, Schwickardi M 1997 J. Alloys. Compd. 253 1
[18] Chaudhuri S, Graetz J, Ignatov A, Reilly J J, Muckerman J T 2006 J. Am. Chem. Soc. 128 11404
[19] Du A J, Smith S C, Lu G Q 2007 Chem. Phys. Lett. 80
[20] Chaudhuri S, Muckerman J T 2005 J. Phys. Chem. B 109 6952
[21] Wang J, Du Y, Kong Y, Xu H H, Jiang C, Ouyang Y F, Sun L X 2010 Int. J. Hydrogen Energy 35 609
[22] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[23] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[24] Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978
[25] Henkelman G, Jónsson H 1999 J. Chem. Phys. 111 7010
[26] Mills G, Jónsson H, Schenter G K 1995 Surf. Sci. 324 305
[27] Anton D L 2003 J. Alloys. Compd. 356 400
[28] Marashdeh A, Versluis JW I, Valdés Á, Olsen R A, Løvvik O M, Kroes GJ 2013 J. Phys. Chem. C 117(1) 3
[29] Kubas G J 2001 J. Organomet. Chem. 635 37
[30] Kubas G J 2009 J. Organomet. Chem. 694 2648
[31] Zheng M M, Ren T Q, Chen G, Kawazoe Y 2014 J. Phys. Chem. C 118(14) 7442
[32] Peng Q, Chen G, Kang L, Mizuseki H, Kawazoe Y 2011 Int. J. Hydrogen Energy 36 12742
[33] Spišák D, Hafner J 2005 Surf. Sci. 582 69
-
[1] Schlapbach L, Zttel A 2001 Nature 414 353
[2] Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741
[3] Wu M, Wang Q, Sun Q, Jena P 2013 J. Phys. Chem. C 117 6055
[4] Yildirim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501
[5] Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z 2008 Phys. Rev. Lett. 100 206806
[6] Mauron P, Gaboardi M, Remhof A, Bliersbach A, Sheptyakov D, Aramini M, Vlahopoulou G, Giglio F, Pontiroli D, Ricco? M, Zttel A 2013 J. Phys. Chem. C 117 22598
[7] Sano N, Taniguchi K, Tamon H 2014 J. Phys. Chem. C 118(7) 3402
[8] Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 物理学报 62 137301]
[9] Orimo S, Nakamori Y, Eliseo J R, Zttel A, Jensen C M 2007 Chem. Rev. 107 4111
[10] Liu X, McGrady G S, Langmi H W, Jensen C M 2009 J. Am. Chem. Soc. 131 5032
[11] Liu Y, Liang C, Zhou H, Gao M, Pan H, Wang Q 2011 Chem. Commun. 47 1740
[12] Zhang H, Xiao M Z, Zhang G Y, Lu G X, Zhu S L 2011 Acta. Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 物理学报 60 026103]
[13] Zhang H, Liu G L, Qi K Z, Zhang G Y, Xiao M Z, Zhu S L 2010 Chin. Phys. B 19 048601
[14] Li R, Luo X L, Liang G M, Fu W S 2011 Acta. Phys. Sin. 60 117105 (in Chinese) [李荣, 罗小玲, 梁国明, 付文升 2011 物理学报 60 117105]
[15] Bhihi M, Lakhal M, Labrim H, Benyoussef A, El Kenz A, Mounkachi O, Hlil E K 2012 Chin. Phys. B 21 097501
[16] Lozano G A, Ranong C N, Bellosta von Colbe J M, Bormann R, Hapke J, Fieg G, Klassen T, Dornheim M 2012 Int. J. Hydrogen Energy 37 2825
[17] Bogdanović B, Schwickardi M 1997 J. Alloys. Compd. 253 1
[18] Chaudhuri S, Graetz J, Ignatov A, Reilly J J, Muckerman J T 2006 J. Am. Chem. Soc. 128 11404
[19] Du A J, Smith S C, Lu G Q 2007 Chem. Phys. Lett. 80
[20] Chaudhuri S, Muckerman J T 2005 J. Phys. Chem. B 109 6952
[21] Wang J, Du Y, Kong Y, Xu H H, Jiang C, Ouyang Y F, Sun L X 2010 Int. J. Hydrogen Energy 35 609
[22] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[23] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[24] Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978
[25] Henkelman G, Jónsson H 1999 J. Chem. Phys. 111 7010
[26] Mills G, Jónsson H, Schenter G K 1995 Surf. Sci. 324 305
[27] Anton D L 2003 J. Alloys. Compd. 356 400
[28] Marashdeh A, Versluis JW I, Valdés Á, Olsen R A, Løvvik O M, Kroes GJ 2013 J. Phys. Chem. C 117(1) 3
[29] Kubas G J 2001 J. Organomet. Chem. 635 37
[30] Kubas G J 2009 J. Organomet. Chem. 694 2648
[31] Zheng M M, Ren T Q, Chen G, Kawazoe Y 2014 J. Phys. Chem. C 118(14) 7442
[32] Peng Q, Chen G, Kang L, Mizuseki H, Kawazoe Y 2011 Int. J. Hydrogen Energy 36 12742
[33] Spišák D, Hafner J 2005 Surf. Sci. 582 69
计量
- 文章访问数: 6354
- PDF下载量: 407
- 被引次数: 0