搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石(111)/Al界面形成及性能的第一性原理研究

孙士阳 迟中波 徐平平 安泽宇 张俊皓 谭心 任元

引用本文:
Citation:

金刚石(111)/Al界面形成及性能的第一性原理研究

孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元

First-principles study of formation and performance of diamond (111)/Al interface

Sun Shi-Yang, Chi Zhong-Bo, Xu Ping-Ping, An Ze-Yu, Zhang Jun-Hao, Tan Xin, Ren Yuan
PDF
HTML
导出引用
  • 针对金刚石/Al界面的形成和性能, 采用第一性原理计算方法, 研究了Al原子在H终止金刚石表面的吸附及其迁移行为, 以及金刚石/Al界面的结构与黏附功. 结果表明: Al原子吸附对金刚石原子表面结构不敏感, 且表面迁移激活能非常小, 其原因是Al与H原子间没有形成化学键, 仅有少量电荷转移, 为物理吸附; 由吸附位置生长而形成的金刚石/Al界面为亚稳结构, 不具有能量稳定性. 本文结果为理解金属纳米掩膜的形成机理提供重要的理论参考.
    The simple and convenient metallic mask method is a significant method of preparing diamond nanostructures. The metallic mask method has poor repeatability and can not give the ideal results, because it is supported by no theory about formation of surface mental nanoparticles and its technological parameters are optimized by no experimental techniques that are expensive either. Aiming at the formation and performance of the diamond/Al interface, this paper adopts the first-principles to study the adsorption and migration behavior of Al atoms on the H-terminated diamond surface and the structure of the diamond/Al interface. The results show that the highest adsorption energy is at the T4 position, which is only 0.181 eV, through comparing the adsorption energies of Al atoms at the highly symmetrical positions (Top, Br, H3 and T4) on the surface of the H-terminated diamond (111). The adsorption energies at these different positions are similar and the maximum difference is only 0.019 eV. There is formed no chemical bond, although Al has partial charge transfer on the H-terminated surface through the analysis of differential charge density and worse layout distribution. This phenomenon can be considered as electrostatic adsorption. That is to say, the adsorption of Al atoms are physical adsorption. The smooth potential energy surface also makes it easier for Al atoms to migrate on the diamond surface. The calculation results reveal that the migration activation energies of the two possible migration paths (from T4 position to Br position and from T4 to Top position) are 0.011 eV and 0.026 eV respectively. The above results imply that the metal Al and diamond are mainly connected by weak force, so the adhesion work of the three diamond/Al interface structures is compared based on the geometric stacking structure. The results show that the adhesion work of the three interfaces is around 0. These results indicate that the stability of the diamond/Al interface is not high and the stable structure of the interface is easily destroyed when the external environment changes. This speculation can be confirmed in molecular dynamics. When the simulated temperature is 300 ℃, the liquefied metal Al obviously accumulates into spheres. According to the above research results, we deduce that the metallic mask method does not require high requirements for the relationship between the metal and the substrate material, which depends mainly on the surface topography of the base material. This research provides an important theoretical reference for understanding the formation mechanism of metal nanomasks.
      通信作者: 孙士阳, sunshy@imust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61765012)、内蒙古自治区自然科学基金(批准号: 2020LH08009, 2019LH05009)和内蒙古自治区高等学校科学研究项目(批准号: NJZY20099)资助的课题
      Corresponding author: Sun Shi-Yang, sunshy@imust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61765012), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2020LH08009, 2019LH05009), and the Scientific Research Foundation of the Higher Education Institutions of Inner Mongolia Autonomous Region, China (Grant No. NJZY20099)
    [1]

    Zhou Y, Zhi J, Zou Y 2008 Anal. Chem. 80 4141Google Scholar

    [2]

    Gu H, Su X D 2006 J. Phys. Chem. B 109 3611Google Scholar

    [3]

    Smirnov W, Kriele A, Yang N 2010 Diamond Relat. Mater. 19 186Google Scholar

    [4]

    Loginov P A, Zhassay U A, Bychkova M Y 2020 Int. J. Refract. Met. Hard Mater. 92 105289Google Scholar

    [5]

    陆延青, 肖敏, 彭茹雯 2020 中国基础科学 22 11Google Scholar

    Lu Y Q, Xiao M, Peng R W 2020 China Basic. Sci. 22 11Google Scholar

    [6]

    Yu Y, Wu L, Zhi J 2015 Angew. Chem. 46 14326Google Scholar

    [7]

    Zhang J, Cao J X, Chen X 2015 Phys. Rev. B 91 045417Google Scholar

    [8]

    Liao M, Hishita S, Watanabe E 2010 Adv. Mater. 22 47Google Scholar

    [9]

    Masuda H, Yanagishita T, Yasui K 2001 Adv. Mater. 13 247Google Scholar

    [10]

    Yang N, Uetsuka H, Williams O A 2009 Phys. Status Solidi R 206 9Google Scholar

    [11]

    Okuyama S, Matsushita S I, Fujishima A 2002 Langmuir 18 8282Google Scholar

    [12]

    Scholze A, Schmidt W G, Kgckell P 1996 Mater. Sci. Eng., C 37 158Google Scholar

    [13]

    Stampfl C, Derry T E, Makau N W 2010 J. Phys. Condens. Matter 22 475005Google Scholar

    [14]

    Larsson K, Lunell S 1997 J. Phys. Chem. A 101 76Google Scholar

    [15]

    Nie J L, Xiao H Y, Zu X T 2006 Chem. Phys. 326 308Google Scholar

    [16]

    Hong X Y, Xu L, Gu C 2007 Appl. Surf. Sci. 253 4260Google Scholar

    [17]

    于洋 2004 硕士学位论文 (长春: 吉林大学)

    Yu Y 2004 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [18]

    徐力方, 顾长志, 于洋 2004 物理学报 53 2710Google Scholar

    Xu L F, Gu C Z, Yu Y 2004 Acta Phys. Sin. 53 2710Google Scholar

    [19]

    刘峰斌, 金秀婷, 张畅 2020 有色金属工程 10 21Google Scholar

    Liu F B, Jin X T, Zhang C 2020 Nonferrous Metal Engineering. 10 21Google Scholar

    [20]

    Kresse G, Furthmüller J B 1996 Comput. Mater. Sci. 6 15Google Scholar

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [22]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [24]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616Google Scholar

    [25]

    Hendrik J, Monkhorst H J, James D P 1976 Phys. Rev. B 13 5188Google Scholar

    [26]

    Maniopoulou A, Davidson E 2012 Comput. Phys. Commun. 183 1696Google Scholar

    [27]

    刘峰斌, 汪家道, 陈大融 2010 物理学报 59 6556Google Scholar

    Liu B F, Wang J D, Chen D R 2010 Acta Phys. Sin. 59 6556Google Scholar

    [28]

    Kawarada H. 1996 Surf. Sci. Rep. 26 205Google Scholar

    [29]

    Siegel D J, Hector L G, Adams J B 2002 Acta Mater. 50 619Google Scholar

    [30]

    Taubin G 1991 IEEE. Trans. Pattern Anal. 13 1115Google Scholar

    [31]

    Almtoft K P, Ejsing A M, Bøttiger J 2007 J. Mater. Res. 22 1018Google Scholar

    [32]

    Voigt W 1966 Lehrbuch der Kristallphysik (Vol. 1) (Germany: Springer Fachmedien Wiesbaden Gmbh) p3

    [33]

    Reuss A 1929 Appl. Math. Mech. 9 49Google Scholar

    [34]

    Hill R 1952 Proc. Phys. Soc. 65 349Google Scholar

    [35]

    基泰尔 1979 固体物理导论(北京: 科学出版社) 第341页

    Kittel C 1979 Introduction to Solid State Physics (Beijing: Science Press) p341 (in Chinese)

  • 图 1  H终止金刚石(111)表面模型, 其中棕色球表示C原子, 白色小球表示表面H原子 (a)模型原子分布的立体结构示意图; (b)金刚石(111)表面格点位置示意图

    Fig. 1.  H-Ter diamond (111) surface model: (a) Three-dimensional structure diagram of model atom distribution; (b) location of diamond (111) surface grid points. Brown spheres represent C atoms, white spheres represent surface H atoms.

    图 2  单个Al原子在H-Ter表面吸附位置及迁移路径, 其中纵坐标为插入点的能量差值

    Fig. 2.  Adsorption positions and migration paths of single Al atom on H-Ter surface. The ordinate is the energy difference of the insertion point.

    图 3  Al原子在Br (a), H3 (b), Top (c), T4 (d)吸附位置的电荷密度分布图, 图中银白色球为Al原子, 颜色从蓝到红表示电荷密度从高到低

    Fig. 3.  Charge density distribution of single Al atom adsorbed on Br (a), H3 (b), Top (c), and T4 (d) sites, respectively. The big silver ball in the picture is Al atom. The color from blue to red indicates the charge density from high to low.

    图 4  金刚石/Al界面处Al液形成过程

    Fig. 4.  Formation process of molten aluminum at the diamond/Al interface.

    图 5  金刚石/Al界面的PDOS图, 图中的L表示距离界面远近的C原子层数

    Fig. 5.  PDOS diagram of metal aluminum-diamond interface. The L indicates the lay of C atom far from the interface.

    表 1  金刚石弹性常数及弹性模量

    Table 1.  Elastic constants and modulus of diamond.

    aC11/GPaC12/GPaC44/GPaB/GPaE/GPaG/GPa
    Text value3.52310.3111.1045.464668.621102.60634.821
    Experimental value [35]3.56710.7641.2525.961708.08299.32433.601
    下载: 导出CSV

    表 2  单个Al原子的吸附能

    Table 2.  Adsorption energies of a single Al atom.

    TopT4H3Br
    Etot /eV–892.761–892.779–892.776–892.775
    Ead/eV0.1620.1810.1760.177
    $ {E}_{\mathrm{a}\mathrm{d}}^{{*}} $/eV0.1450.1620.1590.157
    下载: 导出CSV

    表 3  不同吸附结构中Al原子及其周边原子电荷转移量

    Table 3.  Amount of charge transfer of Al atom and its surrounding atoms in different adsorption structures.

    siteElement
    C1/eC2/eH1/eH2/eAl/e
    Br–0.022–0.0290.0450.045–0.117
    H3–0.025–0.0200.0470.046–0.138
    T4–0.026–0.0280.0470.046–0.137
    Top–0.027–0.0240.0230.072–0.130
    下载: 导出CSV

    表 4  由吸附位置形成界面的黏附功

    Table 4.  Adhesion work of the interface formed by the adsorption position.

    TopT4H3
    Wad/(J·m–2)0.0190.0230.034
    下载: 导出CSV
  • [1]

    Zhou Y, Zhi J, Zou Y 2008 Anal. Chem. 80 4141Google Scholar

    [2]

    Gu H, Su X D 2006 J. Phys. Chem. B 109 3611Google Scholar

    [3]

    Smirnov W, Kriele A, Yang N 2010 Diamond Relat. Mater. 19 186Google Scholar

    [4]

    Loginov P A, Zhassay U A, Bychkova M Y 2020 Int. J. Refract. Met. Hard Mater. 92 105289Google Scholar

    [5]

    陆延青, 肖敏, 彭茹雯 2020 中国基础科学 22 11Google Scholar

    Lu Y Q, Xiao M, Peng R W 2020 China Basic. Sci. 22 11Google Scholar

    [6]

    Yu Y, Wu L, Zhi J 2015 Angew. Chem. 46 14326Google Scholar

    [7]

    Zhang J, Cao J X, Chen X 2015 Phys. Rev. B 91 045417Google Scholar

    [8]

    Liao M, Hishita S, Watanabe E 2010 Adv. Mater. 22 47Google Scholar

    [9]

    Masuda H, Yanagishita T, Yasui K 2001 Adv. Mater. 13 247Google Scholar

    [10]

    Yang N, Uetsuka H, Williams O A 2009 Phys. Status Solidi R 206 9Google Scholar

    [11]

    Okuyama S, Matsushita S I, Fujishima A 2002 Langmuir 18 8282Google Scholar

    [12]

    Scholze A, Schmidt W G, Kgckell P 1996 Mater. Sci. Eng., C 37 158Google Scholar

    [13]

    Stampfl C, Derry T E, Makau N W 2010 J. Phys. Condens. Matter 22 475005Google Scholar

    [14]

    Larsson K, Lunell S 1997 J. Phys. Chem. A 101 76Google Scholar

    [15]

    Nie J L, Xiao H Y, Zu X T 2006 Chem. Phys. 326 308Google Scholar

    [16]

    Hong X Y, Xu L, Gu C 2007 Appl. Surf. Sci. 253 4260Google Scholar

    [17]

    于洋 2004 硕士学位论文 (长春: 吉林大学)

    Yu Y 2004 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [18]

    徐力方, 顾长志, 于洋 2004 物理学报 53 2710Google Scholar

    Xu L F, Gu C Z, Yu Y 2004 Acta Phys. Sin. 53 2710Google Scholar

    [19]

    刘峰斌, 金秀婷, 张畅 2020 有色金属工程 10 21Google Scholar

    Liu F B, Jin X T, Zhang C 2020 Nonferrous Metal Engineering. 10 21Google Scholar

    [20]

    Kresse G, Furthmüller J B 1996 Comput. Mater. Sci. 6 15Google Scholar

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [22]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [24]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616Google Scholar

    [25]

    Hendrik J, Monkhorst H J, James D P 1976 Phys. Rev. B 13 5188Google Scholar

    [26]

    Maniopoulou A, Davidson E 2012 Comput. Phys. Commun. 183 1696Google Scholar

    [27]

    刘峰斌, 汪家道, 陈大融 2010 物理学报 59 6556Google Scholar

    Liu B F, Wang J D, Chen D R 2010 Acta Phys. Sin. 59 6556Google Scholar

    [28]

    Kawarada H. 1996 Surf. Sci. Rep. 26 205Google Scholar

    [29]

    Siegel D J, Hector L G, Adams J B 2002 Acta Mater. 50 619Google Scholar

    [30]

    Taubin G 1991 IEEE. Trans. Pattern Anal. 13 1115Google Scholar

    [31]

    Almtoft K P, Ejsing A M, Bøttiger J 2007 J. Mater. Res. 22 1018Google Scholar

    [32]

    Voigt W 1966 Lehrbuch der Kristallphysik (Vol. 1) (Germany: Springer Fachmedien Wiesbaden Gmbh) p3

    [33]

    Reuss A 1929 Appl. Math. Mech. 9 49Google Scholar

    [34]

    Hill R 1952 Proc. Phys. Soc. 65 349Google Scholar

    [35]

    基泰尔 1979 固体物理导论(北京: 科学出版社) 第341页

    Kittel C 1979 Introduction to Solid State Physics (Beijing: Science Press) p341 (in Chinese)

  • [1] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究. 物理学报, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [2] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [3] 徐攀攀, 韩培德, 张竹霞, 张彩丽, 董楠, 王剑. 硼在fcc-Fe晶界偏析及对界面结合能力影响的第一性原理研究. 物理学报, 2021, 70(16): 166401. doi: 10.7498/aps.70.20210361
    [4] 祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉. 金刚石/铝复合材料界面性质第一性原理计算及界面反应. 物理学报, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [5] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [6] 黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰. 第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用. 物理学报, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [7] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [8] 董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献. Ni与钇稳定的氧化锆(111)表面相互作用以及界面活性的第一性原理研究. 物理学报, 2016, 65(6): 068201. doi: 10.7498/aps.65.068201
    [9] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [10] 王应, 李勇, 李宗宝. B,N协同掺杂金刚石电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(8): 087101. doi: 10.7498/aps.65.087101
    [11] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [12] 唐杰, 张国英, 鲍君善, 刘贵立, 刘春明. 杂质S对Fe/Al2O3界面结合影响的第一性原理研究. 物理学报, 2014, 63(18): 187101. doi: 10.7498/aps.63.187101
    [13] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [14] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究. 物理学报, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [15] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [16] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [17] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [18] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [19] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  7539
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-04-28
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回