搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅异质结太阳电池中钝化层和发射层的优化设计

张博宇 周佳凯 任程超 苏祥林 任慧志 赵颖 张晓丹 侯国付

引用本文:
Citation:

硅异质结太阳电池中钝化层和发射层的优化设计

张博宇, 周佳凯, 任程超, 苏祥林, 任慧志, 赵颖, 张晓丹, 侯国付

Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells

Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu
PDF
HTML
导出引用
  • 本征钝化层及p型发射层对硅异质结太阳电池的性能具有重要的影响. 本文在常规钝化层与晶硅衬底(c-Si)之间插入一层低功率、高氢稀释比沉积的超薄缓冲层, 以此来提高钝化效果, 并拓宽钝化层工艺窗口. 此外, 设计并制备了具有宽带隙、高电导特性的重掺杂纳米晶硅/轻掺杂p型双层复合发射极. 实验结果表明, 双层钝化层具有更加稳定与优异的钝化效果, 钝化样品的少子寿命达到4.197 ms, 隐含开路电压(implied-VOC, iVOC)达到726 mV. 同时双层复合发射层中, 轻掺杂的掺杂层可以减弱掺杂剂向本征钝化层的扩散, 保证良好的钝化效果, 而重掺杂的掺杂层不仅能够提供足够的内建电场, 而且可以改善掺杂层与氧化铟锡薄膜的接触特性, 进而提升电池的输出特性. 并且高氢稀释比的前掺杂层还可以对钝化层起到氢处理的作用, 减少钝化层表面的悬挂键, 从而增强化学钝化效果, 进而提高电池的开路电压. 最终, 基于商业化制绒的硅片, 获得了效率达到20.96%的硅异质结太阳电池, 其中开路电压为710 mV, 短路电流密度为39.88 mA/cm2, 填充因子为74.02%.
    Silicon heterojunction (SHJ) solar cells have attracted much attention in the international photovoltaic market due to their high efficiencies and low costs. The quality of amorphous silicon/crystalline silicon (a-Si:H/c-Si) interfaces of SHJ solar cells has a key influence on the device performance. Therefore, the carrier recombination rate of a-Si:H/c-Si interface needs to be effectively controlled. In addition, as the important component of SHJ solar cells, the p-type emitter must meet the requirements for high conductivity, high light transmittance, and energy band matching with c-Si. The research contents and the relevant achievements of this paper include the following aspects. Firstly, in order to reduce the surface defects and realize the energy band alignment of a-Si:H/c-Si interface, the effect of passivation layer on passivation effect is studied. An ultra-thin buffer layer deposited by a low power and a high hydrogen dilution ratio is inserted between the conventional passivation layer and c-Si to improve the passivation effect and broaden the process window of passivation layer. The effects of the buffer layer thickness and hydrogen dilution ratio on passivation quality are further studied, and the best experimental conditions of buffer layer are obtained. The experimental results show that the sample with double-layered passivation layer is more stable than the conventional passivation layer. The minority carrier lifetime of the sample with single conventional passivation layer is 3.8 ms and the iVOC is 712 mV, while the minority carrier lifetime of the sample with double-layered passivation layer is 4.197 ms and the iVOC is 726 mV.Secondly, for the p-type emitters of silicon heterojunction solar cells, the effects of doping level on the photoelectric properties of p-type hydrogenated nanocrystalline silicon (nc-Si:H) thin films are studied. On this basis, the p++-nc-Si:H/p-nc-Si:H double-layer emitter with wide band gap and high conductivity is designed and fabricated. By analyzing the optical and electrical properties of different emitters, it is found that p-nc-Si:H has good electrical and optical properties. Owing to the high doping efficiency of nc-Si, a small amount of doping can obtain high conductivity. Lightly doped p-nc-Si:H provides a better contact with the passivation layer, while heavily doped p++-nc-Si:H can not only provide enough built-in electric field, but also improve the contact characteristics of p/ITO, thus enhancing the output characteristics of the cell. At the same time, the deposition of p-nc-Si:H layer with high hydrogen dilution ratio can also implement the hydrogen plasma treatment on the passivation layer, the reduction of the dangling bonds on the surface of the c-Si, the enhancement of the chemical passivation effect, and thus improving the open circuit voltage of the cell. Finally, a silicon heterojunction solar cell with an efficiency of 20.96% is obtained based on the commercial czochralski silicon wafer, with an open circuit voltage of 710 mV, a short circuit current density of 39.88 mA/cm2 and filling factor of 74.02%.
      通信作者: 侯国付, gfhou@nankai.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1500402)和国家自然科学基金(批准号: 62074084)资助的课题
      Corresponding author: Hou Guo-Fu, gfhou@nankai.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1500402) and the National Natural Science Foundation of China (Grant No. 62074084)
    [1]

    李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1Google Scholar

    Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1Google Scholar

    [2]

    陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708Google Scholar

    Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Science China 43 708Google Scholar

    [3]

    Rehman A U, Lee S H 2013 Sci. World J. 11 470347Google Scholar

    [4]

    Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar

    [5]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar

    [6]

    Okuda K, Okamoto H, Hamakawa Y 1983 Jpn. J. Appl. Phys. 22 L605Google Scholar

    [7]

    Neumuller A, Sergeev O, Heise S J, Bereznev S, Volobujeva O, Salas J F L, Vehse M, Agert C 2018 Nano Energy 43 228Google Scholar

    [8]

    Geissbuhler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C 2013 Appl. Phys. Lett. 102 23Google Scholar

    [9]

    Mews M, Schulze T F, Mingirulli N, Korte L 2013 Appl. Phys. Lett. 102 122106Google Scholar

    [10]

    Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, Wolf S D, Ballif C 2015 IEEE J. Photovoltaics 5 1293Google Scholar

    [11]

    Ru X, Qu M, Wang J, Ruan T, Yang M, Peng F, Long W, Zheng K, Yan H, Xu X 2020 Sol. Energy Mater. Sol. Cells 215 110643Google Scholar

    [12]

    Wu Z, Zhang L, Chen R, Liu W, Li Z, Meng F, Liu Z 2019 Appl. Surf. Sci. 475 504Google Scholar

    [13]

    Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905Google Scholar

    [14]

    Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar

    [15]

    Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516Google Scholar

    [16]

    Lee Y, Kim H, Iftiquar S M, Kim S, Kim S, Ahn S, Lee Y J, Dao V A, Yi J 2014 J. Appl. Phys. 116 244506Google Scholar

    [17]

    Boccard M, Monnard R, Antognini L, Ballif C 2018 AIP Conf. Proc. 1999 040003

    [18]

    Richter A, Smirnov V, Lambertz A, Nomoto K, Welter K, Ding K N 2018 Sol. Energy Mater. Sol. Cells 174 196Google Scholar

    [19]

    Li Z, Zhang L, Wu Z, Liu W, Chen R, Meng F, Liu Z 2020 J. Appl. Phys. 128 045309Google Scholar

    [20]

    Ding K N, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi R 6 193Google Scholar

    [21]

    Mazzarella L, Kirner S, Gabriel O, Schmidt S S, Korte L, Stannowski B, Rech B, Schlatmann R 2017 Phys. Atatus Solidi A 214 1532958Google Scholar

    [22]

    Descoeudres A, Barraud L, De Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar

    [23]

    Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508Google Scholar

    [24]

    De Wolf S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104Google Scholar

    [25]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109Google Scholar

    [26]

    Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902Google Scholar

    [27]

    张晓丹, 赵颖, 高艳涛, 陈飞, 朱锋, 魏长春, 孙建, 耿新华 2006 物理学报 55 6697Google Scholar

    Zhang X D, Zhao Y, Gao Y T, Chen F, Zhu F, Wei C C, Sun J, Geng X H 2006 Acta Phys. Sin. 55 6697Google Scholar

    [28]

    Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902Google Scholar

    [29]

    Kanevce A, Metzger W K 2009 J. Appl. Phys. 105 094507Google Scholar

    [30]

    Madani Ghahfarokhi O, von Maydell K, Agert C 2014 Appl. Phys. Lett. 104 113901Google Scholar

    [31]

    Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar

    [32]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovoltaics 4 1433Google Scholar

    [33]

    Hao L C, Zhang M, Ni M, Shen X L, Feng X D 2019 J. Electron. Mater. 48 4688Google Scholar

  • 图 1  (a)含双层钝化层的SHJ电池示意图; (b)含双层发射极的SHJ电池示意图

    Fig. 1.  (a) Schematic diagram of the SHJ solar cell with the double passivation layer; (b) schematic diagram of the SHJ solar cell with the double emitting layer.

    图 2  不同氢稀释比的单层钝化层的少子寿命和iVOC的变化趋势

    Fig. 2.  Minority carrier lifetime and variation trend of iVOC in single passivation layer with different hydrogen dilution ratio.

    图 3  (a)常规钝化层的FTIR图; (b)缓冲层的FTIR图谱

    Fig. 3.  FTIR spectra of (a) conventional passivation layers and (b) buffer passivation layers.

    图 4  不同厚度缓冲层的少子寿命和iVOC的变化趋势

    Fig. 4.  Minority carrier lifetime and iVOC of samples with different thicknesses of buffer layer.

    图 5  不同氢稀释比的双层钝化层的少子寿命与iVOC的变化趋势

    Fig. 5.  Minority carrier lifetimes and iVOC of samples of double passivation layer for different hydrogen dilution ratio.

    图 6  双层钝化层与单层钝化层的少子寿命箱线图

    Fig. 6.  Minority carrier lifetimes of samples with double passivation layers or single passivation layers.

    图 7  不同掺杂量的p型掺杂层的载流子浓度、电导率以及激活能

    Fig. 7.  Carrier density, conductivity and activation energy of p-type layers with different TMB flow rate.

    图 8  不同掺杂量的p型掺杂层的Raman图谱

    Fig. 8.  Raman spectra of p-type layers with different TMB flow rate.

    图 9  SHJ电池性能参数随p型掺杂层的掺杂量的变化 (a) VOC; (b) FF; (c) Jsc; (d) Eff

    Fig. 9.  J -V parameters of SHJ solar cells with different TMB flow rates in p-type layers: (a) VOC; (b) FF; (c) Jsc; (d) Eff.

    图 10  两种不同材料的p型掺杂层的Raman图谱

    Fig. 10.  Raman spectra of single-layer emitter and double-layer emitter.

    图 11  不同p型发射极对应的SHJ电池 (a) J -V特性曲线; (b) EQE曲线

    Fig. 11.  (a) J -V curves and (b) EQE curves of SHJ solar cells with different p-type emitters.

    图 12  双层发射级SHJ电池与单层发射极SHJ电池的J -V参数箱线图

    Fig. 12.  Illuminate J -V parameters of SHJ solar cells with double emitter layer and single layer emitter.

    表 1  重掺杂层不同氢稀释比的电池具体参数

    Table 1.  J -V parameters of SHJ solar cells with different hydrogen dilution ratio in the p++-nc-Si:H layer.

    H2∶SiH4∶TMBJSC/mA·cm–2VOC/VFF/%Eff /%
    120∶4∶438.70.70966.5718.26
    160∶4∶438.910.71069.0819.08
    200∶4∶439.150.70970.8419.66
    240∶4∶438.40.70865.5617.8
    下载: 导出CSV

    表 2  重掺杂层不同掺杂量的电池具体参数

    Table 2.  J -V parameters of SHJ solar cells with different TMB flow rate in the p++-nc-Si:H layer.

    H2∶SiH4∶TMBJSC/mA·cm–2VOC/VFF/%Eff/%
    200∶4∶439.150.70970.8419.66
    200∶4∶4.839.370.70871.8620.03
    200∶4∶5.638.790.70969.7119.17
    200∶4∶6.438.70.71063.2017.3
    下载: 导出CSV
  • [1]

    李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1Google Scholar

    Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1Google Scholar

    [2]

    陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708Google Scholar

    Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Science China 43 708Google Scholar

    [3]

    Rehman A U, Lee S H 2013 Sci. World J. 11 470347Google Scholar

    [4]

    Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar

    [5]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar

    [6]

    Okuda K, Okamoto H, Hamakawa Y 1983 Jpn. J. Appl. Phys. 22 L605Google Scholar

    [7]

    Neumuller A, Sergeev O, Heise S J, Bereznev S, Volobujeva O, Salas J F L, Vehse M, Agert C 2018 Nano Energy 43 228Google Scholar

    [8]

    Geissbuhler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C 2013 Appl. Phys. Lett. 102 23Google Scholar

    [9]

    Mews M, Schulze T F, Mingirulli N, Korte L 2013 Appl. Phys. Lett. 102 122106Google Scholar

    [10]

    Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, Wolf S D, Ballif C 2015 IEEE J. Photovoltaics 5 1293Google Scholar

    [11]

    Ru X, Qu M, Wang J, Ruan T, Yang M, Peng F, Long W, Zheng K, Yan H, Xu X 2020 Sol. Energy Mater. Sol. Cells 215 110643Google Scholar

    [12]

    Wu Z, Zhang L, Chen R, Liu W, Li Z, Meng F, Liu Z 2019 Appl. Surf. Sci. 475 504Google Scholar

    [13]

    Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905Google Scholar

    [14]

    Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar

    [15]

    Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516Google Scholar

    [16]

    Lee Y, Kim H, Iftiquar S M, Kim S, Kim S, Ahn S, Lee Y J, Dao V A, Yi J 2014 J. Appl. Phys. 116 244506Google Scholar

    [17]

    Boccard M, Monnard R, Antognini L, Ballif C 2018 AIP Conf. Proc. 1999 040003

    [18]

    Richter A, Smirnov V, Lambertz A, Nomoto K, Welter K, Ding K N 2018 Sol. Energy Mater. Sol. Cells 174 196Google Scholar

    [19]

    Li Z, Zhang L, Wu Z, Liu W, Chen R, Meng F, Liu Z 2020 J. Appl. Phys. 128 045309Google Scholar

    [20]

    Ding K N, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi R 6 193Google Scholar

    [21]

    Mazzarella L, Kirner S, Gabriel O, Schmidt S S, Korte L, Stannowski B, Rech B, Schlatmann R 2017 Phys. Atatus Solidi A 214 1532958Google Scholar

    [22]

    Descoeudres A, Barraud L, De Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar

    [23]

    Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508Google Scholar

    [24]

    De Wolf S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104Google Scholar

    [25]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109Google Scholar

    [26]

    Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902Google Scholar

    [27]

    张晓丹, 赵颖, 高艳涛, 陈飞, 朱锋, 魏长春, 孙建, 耿新华 2006 物理学报 55 6697Google Scholar

    Zhang X D, Zhao Y, Gao Y T, Chen F, Zhu F, Wei C C, Sun J, Geng X H 2006 Acta Phys. Sin. 55 6697Google Scholar

    [28]

    Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902Google Scholar

    [29]

    Kanevce A, Metzger W K 2009 J. Appl. Phys. 105 094507Google Scholar

    [30]

    Madani Ghahfarokhi O, von Maydell K, Agert C 2014 Appl. Phys. Lett. 104 113901Google Scholar

    [31]

    Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar

    [32]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovoltaics 4 1433Google Scholar

    [33]

    Hao L C, Zhang M, Ni M, Shen X L, Feng X D 2019 J. Electron. Mater. 48 4688Google Scholar

  • [1] 袁赫泽, 陈新亮, 梁柄权, 孙爱鑫, 王雪骄, 赵颖, 张晓丹. 晶硅太阳电池钝化层技术研究进展. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241292
    [2] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [3] 肖忆瑶, 何佳豪, 陈南锟, 王超, 宋宁宁. 基于负载Fe3O4纳米微球的大尺寸单层二维Ti3C2Tx微波吸收性能. 物理学报, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [4] 赵建宁, 魏东, 吕国正, 王子成, 刘冬欢. 一维异质结构的瞬态热整流效应. 物理学报, 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [5] 王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华. 钝化层对背沟道刻蚀型IGZO薄膜晶体管的影响. 物理学报, 2023, 72(8): 087302. doi: 10.7498/aps.72.20222272
    [6] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化. 物理学报, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [7] 王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹. 钙钛矿/硅异质结叠层太阳电池: 光学模拟的研究进展. 物理学报, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [8] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 物理学报, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [9] 檀满林, 周丹丹, 符冬菊, 张维丽, 马清, 李冬霜, 陈建军, 张化宇, 王根平. 基于BiFeO3/ITO复合膜表面钝化的黑硅太阳电池性能研究. 物理学报, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [10] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [11] 於黄忠. 有机共混结构叠层太阳电池的研究进展. 物理学报, 2013, 62(2): 027201. doi: 10.7498/aps.62.027201
    [12] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 物理学报, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [13] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [14] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [15] 张晓丹, 郑新霞, 王光红, 许盛之, 岳强, 林泉, 魏长春, 孙建, 张德坤, 熊绍珍, 耿新华, 赵颖. 单室沉积高效非晶硅/微晶硅叠层太阳电池的研究. 物理学报, 2010, 59(11): 8231-8236. doi: 10.7498/aps.59.8231
    [16] 孙明昭, 张淳民, 宋晓平. 新型八边形谐振环金属线复合周期结构左手材料奇异性质研究. 物理学报, 2010, 59(8): 5444-5449. doi: 10.7498/aps.59.5444
    [17] 周骏, 邸明东, 孙铁囤, 孙永堂, 汪昊. 界面缺陷态密度与衬底电阻率取值对硅异质结光伏电池性能的影响. 物理学报, 2010, 59(12): 8870-8876. doi: 10.7498/aps.59.8870
    [18] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [19] 袁育杰, 侯国付, 薛俊明, 韩晓艳, 刘云周, 杨兴云, 刘丽杰, 董 培, 赵 颖, 耿新华. 微晶硅n-i-p太阳电池中n型掺杂层对本征层结构特性的影响. 物理学报, 2008, 57(6): 3892-3897. doi: 10.7498/aps.57.3892
    [20] 赵 雷, 周春兰, 李海玲, 刁宏伟, 王文静. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化. 物理学报, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
计量
  • 文章访问数:  8351
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-10
  • 修回日期:  2021-05-18
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回