搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶硅太阳电池钝化层技术研究进展

袁赫泽 陈新亮 梁柄权 孙爱鑫 王雪骄 赵颖 张晓丹

引用本文:
Citation:

晶硅太阳电池钝化层技术研究进展

袁赫泽, 陈新亮, 梁柄权, 孙爱鑫, 王雪骄, 赵颖, 张晓丹

Research progress in passivation layer technology for crystalline silicon solar cells

Yuan Heze, Chen Xinliang, Liang Bingquan, Sun Aixin, Wang Xuejiao, Zhao Ying, Zhang Xiaodan
PDF
导出引用
  • 光伏技术快速发展的背景下,晶硅太阳电池作为主流的光伏器件,其性能的提升成为研究的热点。晶硅太阳电池包括了硅异质结(SHJ)太阳电池、隧穿氧化物钝化接触(TOPCon)太阳电池及钝化发射极和背面接触(PERC)太阳电池。晶硅太阳电池的表面钝化层作为提升电池性能的关键之一,其发展历程与晶硅太阳电池的发展紧密相连。然而,由于钝化层的复杂机制和实验研究的高要求,实现高质量的表面钝化面临挑战。本文综述了SHJ太阳电池、TOPCon和PERC太阳电池界面钝化技术的关键问题和研究进展,首先系统地回顾了SHJ太阳电池关键技术突破的研究进展,并讨论了生长条件对SHJ太阳电池钝化性能的影响以及掺杂层对本征层和钝化性能的影响作用;其次,阐述了近五年来提升TOPCon和PERC太阳电池钝化性能的重要策略和研究成果;最后给出钝化层技术的发展趋势展望。本论文将为晶硅太阳电池未来技术改进和性能提升提供有价值的参考。
    Under the background of rapid advancements in photovoltaic technology, crystalline silicon (c-Si) solar cells, as the mainstream photovoltaic devices, have gained significant research attention for their excellent performances. In particular, silicon heterojunction (SHJ) solar cells, TOPCon (Tunnel Oxide Passivated Contact), and PERC (Passivated Emitter and Rear Cell) represent the cutting-edge technologies in c-Si solar cells. The surface passivation layer of crystalline silicon solar cells, as one of the key factors to improve cell performances, has been closely linked to the development of crystalline silicon solar cells. Due to the complex mechanism of passivation layer and the high demand of experimental research, it is challenging to achieve high quality surface passivation. This paper comprehensively reviews the key issues and research progress in interface passivation technologies for SHJ, TOPCon, and PERC solar cells. Firstly, the research progress of key technology breakthrough of SHJ solar cell is reviewed systematically, and the influences of growth conditions and doping layer on the passivation performances of SHJ solar cell are discussed in detail. Secondly, the important strategies and research achievements for improving the passivation performances of TOPCon and PERC solar cells in the past five years are systematically described. Finally, the development trend of passivation layer technology is prospected. This review offers valuable insights for future technological improvements and performance enhancements in c-Si solar cells.
  • [1]

    Renewables 2023 Analysis and forecasts to 2028, Yasmina A, Ana A B, Piotr B https://www.iea.org/reports/renewables-2023 [2024-9-5]

    [2]

    Renewables 2022, Yasmina A, Heymi B, Trevor C https://www.iea.org/reports/renewables-2022 [2024-9-5]

    [3]

    Singh G K 2013 Energy 53 1

    [4]

    Shen W Z, Zhao Y X, Liu F 2022 Front. Energy 16 1

    [5]

    Breaking through 24%, Chang J https://www.hengdian.com/zh-cn/news/detail-10754 [2024-9-5]

    [6]

    Allen T G, Bullock J, Yang X B, Javey A, De Wolf S 2019 Nat. Energy 4 914

    [7]

    Dullweber T, Schmidt J 2016 IEEE J. Photovolt. 6 1366

    [8]

    Rise to 26.89%, jinkosolar https://www.jinkosolar.com/site/newsdetail/1748 [2024-9-5]

    [9]

    Ma S, Du D X, Ding D, Gao C, Li Z P, Wu X Y, Zou S, Su X, Kong X Y, Liao B, Shen W Z 2024 Sol. Energ. Mat. Sol. C. 275 113024

    [10]

    Ullah H, Czapp S, Szultka S, Tariq H, Qasim U B, Imran H 2023 Energies 16 715

    [11]

    Schmidt J, Peibst R, Brendel R 2018 Sol Energ. Mat. Sol. C. 187 39

    [12]

    Global News At 26.81%, LONGi https://www.longi.com/en/news/propelling-the-transformation/ [2024-9-5]

    [13]

    Taguchi M, Yano, A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96

    [14]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovolt. 4 1433

    [15]

    Adachi D, Hernández J L, Yamamoto K 2015 Appl. Phys. Lett. 107 233506

    [16]

    Chen J H, Yang J, Shen Y J, Li F, Chen J W, Liu H X, Xu Y, Mai Y H 2015 Acta Phys. Sin. 64 198801 (in Chinese) [陈剑辉, 杨静, 沈艳娇,李锋,陈静伟,刘海旭,许 颖,麦耀华 2015 物理学报 64 198801]

    [17]

    Schuttauf J W A, van der Werf K H M, Kielen I M, Kielen I M, van Sark W G J H M, Rath J K, Schropp R E I 2011 Appl. Phys. Lett. 98 153514

    [18]

    Xiao Y P, Wang T, Wei X Q, Zhou L 2017 Acta Phys. Sin. 66 108801 (in Chinese) [肖有鹏,王涛,魏秀琴,周浪 2017 物理学报 66 108801]

    [19]

    Haschke J, Dupré O, Boccard M, Ballif C 2018 Sol. Energ. Mat. Sol. C. 187 140

    [20]

    Nagel H, Berge C, Aberle A G 1999 J. Appl. Phys. 86 6218

    [21]

    Kerr M J, Cuevas A, Sinton R A 2002 J. Appl. Phys. 91 399

    [22]

    Panigrahi J, Komarala V K 2021 J. Non-Cryst. Solids 574 121166

    [23]

    Shi C, Shi J, Guan Z, Ge J 2023 materials 16 3144

    [24]

    Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, NakanoS, Hanafusa H, Kuwano Y 1992 Jpn. J. Appl. Phys. 31 3518

    [25]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 90 042111

    [26]

    Chu Y H, Lee C C, Chang T H, Chang S Y, Chang J Y, Li T, Chen I C 2014 Thin Solid Films 570 591

    [27]

    Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62

    [28]

    Liu W, Zhang L, Chen R, Meng F, Guo W, Bao J, Liu Z 2016 J. Appl. Phys. 120 175301

    [29]

    Wronski C R, Collins R W, Pearce J M, Koval R J, Ferlauto A S, Ferreira G M, Chen C 2002 NREL/SR 520 32692

    [30]

    Wang T H, Iwaniczko E, Page M R, Levi D H, Yan Y, Branz H M, Wang Q 2006 Thin Solid Films 501 284

    [31]

    Ruan T Y, Qub M H, Qu X L, Ru X N, Wang J Q, He Y C, Zheng K, Lin B H H F, Xu X X, Zhang Y Z, Yan H 2020 Thin Solid Films 711 138305

    [32]

    Lee K S, Yeon C B, Yun S J, Jung K H, Lima J W 2014 ECS Solid State Letters 3 33

    [33]

    Jiang K, Yang Y H, Yan Z, Huang S L, Li X D, Li Z F, Zhou Y N, Zhang L P, Meng F Y, Liu Z X, Liu W Z 2022 Sol. Energ. Mat. Sol. C. 243 111801

    [34]

    Soman A, Das U K, Hegedus S S 2023 ACS Appl. Electron. Mater. 5 803

    [35]

    Zeng Q G, Li L W, Meng H C, Wu X Y, Wei X Q, Zhou L 2024 J Mater. Sci: Mater. Electron. 35 476

    [36]

    Morales-Vilches A B, Wang E C, Henschel T, Kubicki M, Cruz A, Janke S, Korte L, Schlatmann R, Stannowski B 2020 Phys. Status. Solidi. A 217 1900518

    [37]

    Ru X N, Qu M H, Wang J Q, Ruan T Y, Yang M, Peng F G, Long W, Zheng K, Yan H, Xu X X 2020 Sol. Energ. Mat. Sol. C. 215 110643

    [38]

    Peng C W, He C R, Wu H F, Huang S, Yu C, Su X D, Zou S 2024 Sol. Energ. Mat. Sol. C. 273 112952

    [39]

    Liu C S, Wu C Y, Chen I W, Lee H C, Hong L S 2013 Prog. Photovolt: Res. Appl. 21 326

    [40]

    Page M R, Iwaniczko E, Xu Y Q, Roybal L, Hasoon F, Wang Q, Crandall R S 2011 Thin Solid Films 519 4527

    [41]

    He J, Li W, Wang Y, Mu J L, An K, Chou X J 2015 Mater. Lett. 161 175

    [42]

    Pandey A, Bhattacharya S, Panigrahi J, Mandal S, Komarala V K 2022 Phys. Status Solidi A 219 2200183

    [43]

    Nunomura1 S, Sakata I, Misawa T, Kawai S, Kamataki K, Koga K, Shiratani M 2023 Jpn. J. Appl. Phys. 62 SL1027

    [44]

    Macco B, Melskens J, Podraza N J, Arts K, Pugh C, Thomas O, Kessels W M M 2017 J. Appl. Phys 122 035302

    [45]

    Wu Z P, Zhang L P, Chen R F, Liu W Z, Li Z F, Meng F Y, Liu Z X 2019 Appl. Surf. Sci. 475 504

    [46]

    Tomasil A, Sahli F, Fannil L, Seif J P, de Nicolas S M, Holm N, Geissblihler J, Paviet-Salomon B, Loper P, Nicolay S, De Wolf S, Ballif C 2016 IEEE. J. Photovolt. 6 17

    [47]

    Morell G, Katiyar R S, Weisz S Z, Jia H, Shinar J, Balberg I 1995 J. Appl. Phys. 78 5120

    [48]

    Iqbal Z, Veprek S 1982 J. Phys. C: Solid State Phys. 15 377

    [49]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109

    [50]

    Biegelsen D K, Street R A, Tsai CC, Knights J C 1979 Phys. Rev. B 20 4839

    [51]

    Beyer W, Wagner H 1983 J. Non-Cryst. Solids 59 161

    [52]

    Yabumoto N, Saito K, Morita M, Ohmi T 1991 Jpn. J. Appl. Phys. 30 L419

    [53]

    Beyer W, Wagner H, Chevallier J, Reichelt K 1982 Thin Solid Films 90 145

    [54]

    Beyer W 1991 Phys. Rev. B Condens. Matter 170 105

    [55]

    Beyer W, Wagner H, Mell H 1981 Solid State. Commun. 39 375

    [56]

    Street R A, Tsai CC, Kakalios J, Jackson W B 1987 Philos. Mag. B 56 305

    [57]

    Nasuno Y, Kondo M, Matsuda A, Fukuhori H, Kanemitsu Y 2002 Appl. Phys. Lett. 81 3155

    [58]

    Dreon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M 2020 Nano Energy 70 104495

    [59]

    Holman Z C, Descoeudres A, Barraud L, Fernandez F Z, Sei J P, De Wolf S, Ballif C 2012 IEEE J. Photovolt. 2 7

    [60]

    Ding K N, Aeberhard U, Finger F, Rau U 2013 J. Appl. Phys. 113 134501

    [61]

    Boccard M, Holman Z C 2015 J. Appl. Phys. 118 065704

    [62]

    Jiang K, Liu W Z, Yang Y H, Yan Z, Huang S L, Li Z F, Li X D, Zhang L P, Liu Z X 2022 J. Mater. Sci.: Mater. Electron. 33 416

    [63]

    Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508

    [64]

    Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902

    [65]

    Wu Z P, Zhang L P, Liu W Z,Chen R F, Li Z F, Meng F Y, Liu Z X 2020 J. MATER. SCI-MATER. EL. 31 9468

    [66]

    Wen L L, Zhao L, Wang G H, Jia X J, Xu X H, Qu S Y, Li X T, Zhang X Y, Xin K, Xiao J H, Wang W J 2023 Sol. Energ. Mat. Sol. C. 258 112429

    [67]

    Wu X Y, Wang X T, Lv R R, Song H, Yu Y J, Sen C D, Cheng Y H, Khan M U, Ciesla A, Xu T, Zhang G C, Hoex B 2025 Sol. Energ. Mat. Sol. C. 282 113325

    [68]

    Sinha A, Qian J D, Moffitt S L, Hurst K, Terwilliger K, Miller D C, Schelhas L T, Hacke P 2023 Prog. Photovoltaics 31 36

    [69]

    Yang L, Hu Z C, He Q Y, Liu Z K, Zeng Y H, Yang L F, Yu X G, Yang D R 2024 Sol. Energ. Mat. Sol. C. 275 113022

    [70]

    Yang J L, Tang Y H, Zhou C L, Chen S N, Cheng S Z, Wang L C, Zhou S, Jia X J, Wang W J, Xu X H, Xiao J H, Wei W W 2024 Sol. Energ. Mat. Sol. C. 276 113062

    [71]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 120 270

    [72]

    Padi S P, Khokhar M Q, Chowdhury S, Cho E C, Yi J 2021 Trans. Electr. Electro. 22 557

    [73]

    Wang Q Q, Wu W P, Yuan N Y, Li Y L, Zhang Y, Ding J N 2020 Sol. Energ. Mat. Sol. C. 208 110423

    [74]

    Huang J B, Zhao Z C, Li M, Chen J, Zhou X R, Deng X X, Li B, Shen K L, Cheng Q Y, Cai X W 2023 Sol. Energ. Mat. Sol. C. 260 112489

    [75]

    Xing H Y, Liu Z K, Yang Z H, Liao M D, Wu Q Q, Lin N, Liu W, Ding C F, Zeng Y H, Yan B J, Ye J C 2023 Sol. Energ. Mat. Sol. C. 257 112354

    [76]

    Yang L, Ou Y L, Lv X, Lin N, Zeng Y H, Hu Z C, Yuan S, Ye J C, Yu X G, Yang D R 2024 Energy Environ. Mater. 0 e12795

    [77]

    Qian J Z, Zuo K X, Wang A, Du D Y, Fan J X, Gao J F 2023 Solar Energy 353 9 (in Chinese) [钱金忠,左克祥,王安,杜东亚,凡金星,高纪凡 2023太阳能 353 9]

    [78]

    Ghosh D K, Das G, Bose S, Mukhopadhyay S, Sengupta A 2024 Energy Technol. 12 2400238

    [79]

    Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2017Sol. Energ. Mat. Sol. C. 173 96

    [80]

    Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603

    [81]

    Richter A, Benick J, Müller R, Feldmann F, Reichel C, Hermle M, Glunz S W 2018 Prog. Photovolt. Res. Appl. 26 579

    [82]

    Richter A , Müller R, BenickJ, Feldmann F, Steinhauser  B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S W 2021 Nat. Energy 6 429

    [83]

    Yu H L, Liu W, Du H J, Liu Z K, Liao M D, Song N, Yang Z H, Zeng Y H, Ye J C 2024 Nano Energy 125 109556

    [84]

    Ma D, Liu W, Xiao M J, Yang Z H, Liu Z K, Liao M D, Han Q L, Cheng H, Xing H Y, Ding Z T, Yan B J, Wang Y D, Zeng Y H, Ye J C 2022 Sol. Energy 242 1

    [85]

    Du H J, Lin Y R, Wang Z X, Liao M D, Liu Z K, Luo X J, Cao Y H, Fu L M, Liu W, Yan B J, Yang Z H, Yuan Z Z, Zeng Y H, Ye J C 2024 Mat Sci Semicon Proc. 170 107969

    [86]

    Li W K, Zhou R, Wang Y K, Su Q F, Yang J, Xi M, Liu Y S 2024 Appl. Surf. Sci. 673 160835

    [87]

    Wang Q Q, Gu S W, Guo K Y, Peng H, Wu W P, Ding J N 2024 Sol. Energ. Mat. Sol. C. 273 112959

    [88]

    Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363

    [89]

    Saint-Cast P, Benick J, Kania D, Weiss L, Hofmann M, Rentsch J, Preu R, Glunz S W 2010 IEEE Electron. Device Lett. 31 695

    [90]

    Töfflingera J A, Laadesb A, Leendertza C, Montañeza L M, Kortea L, Stürzebecher U, Sperlichc H P, Recha B 2014 Energy Procedia 55 845

    [91]

    Gatz S, Hannebauer H, Hesse R, Werner F, Schmidt A, Dullweber T, Schmidt J, Bothe K, Brendel R 2011 Phys. Status Solidi Rapid Res. Lett. 5 147

    [92]

    Kim J, Ju M, Kim Y, Yi J 2022 Mat Sci Semicon Proc. 148 106833

    [93]

    Tong R, Zhang S C, Liu D M, Zhang W P, Wang Y T, Liu X F 2021 Sol. Energ. Mat. Sol. C. 231 111319

    [94]

    Liu P K, Cheng Y L, Wang L K 2020 Int. J. Photoenergy 2020 6686797

    [95]

    Kashyap S, Madan J, Pandey R, Ramanujam J 2022 Opt. Mater. 128 112399

    [96]

    Mouri T K, Upadhyaya A, Rohatgi A, Ok Y W, Hua A, Hauschild D, Weinhardt L, Heske C, Upadhyaya V, Rounsaville B, Shafarman WN, Das U K 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC) San Juan, PR, USA, June, 11-16, 2023

    [97]

    Jang J S, Kim H S, Karade V C, Park S W, Kim C W, Kim J H 2024 J. Alloys Compd. 970 172691

    [98]

    Wei P F, Tong R, Liu X F, Wei Y, Zhang Y A, Liu X, Dai J, Yin H P, Liu D M 2024 Mat Sci Semicon Proc. 170 107947

  • [1] 王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华. 钝化层对背沟道刻蚀型IGZO薄膜晶体管的影响. 物理学报, doi: 10.7498/aps.72.20222272
    [2] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控. 物理学报, doi: 10.7498/aps.71.20220815
    [3] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20201246
    [4] 朱静燕, 邹帅, 孙华, 苏晓东. 环境温度下晶硅光伏组件的直冷背板散热分析. 物理学报, doi: 10.7498/aps.70.20201741
    [5] 张博宇, 周佳凯, 任程超, 苏祥林, 任慧志, 赵颖, 张晓丹, 侯国付. 硅异质结太阳电池中钝化层和发射层的优化设计. 物理学报, doi: 10.7498/aps.70.20210674
    [6] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 物理学报, doi: 10.7498/aps.68.20181759
    [7] 程静云, 康朝阳, 宗海涛, 曹国华, 李明. Ag缓冲层对ZnO:Al薄膜结构与光电性能的改善. 物理学报, doi: 10.7498/aps.66.027702
    [8] 陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华. 后退火增强氢化非晶硅钝化效果的研究. 物理学报, doi: 10.7498/aps.64.198801
    [9] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 物理学报, doi: 10.7498/aps.62.197301
    [10] 丁文革, 桑云刚, 于威, 杨彦斌, 滕晓云, 傅广生. 富硅氮化硅/c-Si异质结中的电流输运机理研究. 物理学报, doi: 10.7498/aps.61.247304
    [11] 张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南. Al2O3钝化及其在晶硅太阳电池中的应用. 物理学报, doi: 10.7498/aps.61.187303
    [12] 曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周传仓. Nb/SnO2复合薄膜的制备、结构及光电性能. 物理学报, doi: 10.7498/aps.60.038203
    [13] 周春兰, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 单晶硅表面均匀小尺寸金字塔制备及其特性研究. 物理学报, doi: 10.7498/aps.59.5777
    [14] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, doi: 10.7498/aps.59.1248
    [15] 李凤, 马忠权, 孟夏杰, 殷晏庭, 于征汕, 吕鹏. 晶硅太阳电池中Fe-B对与少子寿命、陷阱浓度及内量子效率的相关性. 物理学报, doi: 10.7498/aps.59.4322
    [16] 胡伟达, 殷菲, 叶振华, 全知觉, 胡晓宁, 李志锋, 陈效双, 陆卫. 吸收层特性和异质结界面电荷对12.5 μm长波HgCdTe光伏探测器响应率的影响研究. 物理学报, doi: 10.7498/aps.58.7891
    [17] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化. 物理学报, doi: 10.7498/aps.57.3813
    [18] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能. 物理学报, doi: 10.7498/aps.53.3229
    [19] 陈一匡, 林揆训, 罗 志, 梁锐生, 周甫方. 铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征. 物理学报, doi: 10.7498/aps.53.582
    [20] 李书平, 王仁智, 郑永梅, 蔡淑惠, 何国敏. 平均键能方法在应变层异质结带阶研究中的应用. 物理学报, doi: 10.7498/aps.49.1441
计量
  • 文章访问数:  27
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-25

/

返回文章
返回