搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电PbTiO3中的多铁性Aurivillius型界面的第一性原理研究

钱涛 徐涛

引用本文:
Citation:

铁电PbTiO3中的多铁性Aurivillius型界面的第一性原理研究

钱涛, 徐涛

First-principles study of multiferroic Aurivillius-type interfaces in ferroelectric PbTiO3

QIAN Tao, XU Tao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 多铁性材料因铁电序和磁序之间的交叉耦合机制所衍生的新奇量子效应(如磁电耦合、拓扑电畴等)而备受关注. 然而, 受限于铁电性源于d0电子构型而铁磁性依赖于dn电子填充的微观机制互斥性, 具有磁电耦合特性的本征多铁性材料仍然有限. 本研究基于第一性原理密度泛函理论计算, 提出通过构建Aurivillius型界面层来调控PbTiO3钙钛矿的电子结构, 成功诱导出界面局域磁矩. 计算结果表明, 该界面层在保持强电极化(高达116.88 μC/cm2)的同时, 通过界面极化电荷调制界面处氧原子的电子占据态从而诱导出界面磁性, 实现了PbTiO3的磁性与极性之间的耦合. 值得注意的是, 这种磁电耦合的多铁态呈现出显著的界面局域特征, 随着层数的增加, 局域磁矩迅速衰减. 我们的研究提出了一种设计多铁性层并分析了可通过改变极化方向调控磁矩的新机制, 为实现具有磁电耦合的多铁性材料器件提供了新范式.
    Multiferroic materials have attracted considerable attention due to their novel quantum phenomena, including magnetoelectric coupling and topological domains, which are derived from the cross-coupling mechanism between ferroelectric order and magnetic order. However, the discovery of intrinsic multiferroic materials exhibiting magnetoelectric coupling remains limited, as ferroelectricity typically originates from the d0 electronic configuration, while ferromagnetism relies on partially filled dn state. Based on first principles calculations, this work demonstrates that electronic structure of PbTiO3 perovskite can be engineered by introducing an Aurivillius-type interface layer, which induces localized magnetic moments at the interface. The results reveal that when the system maintains strong electric polarization (up to 116.88 μC/cm2), the interfacial charge changes the electron occupancy of oxygen atoms, thereby resulting in interface magnetism and magnetoelectric coupling in PbTiO3. Notably, this multiferroic state exhibits pronounced interface localization, with the magnetic moment decaying rapidly as the layer thickness increases. Importantly, the emergent magnetism is asymmetric, resulting in a net positive spontaneous magnetization of 2.0μB. This observation indicates the emergence of ferrimagnetism at the interface. Furthermore, the interfacial region displays p-type conductivity behavior, exhibiting characteristics of two-dimensional hole gas (2DHG), and the density of holes and the density of charge carriers at the interface are several times higher than those in typical heterostructures. Overall, our work proposes a novel mechanism for designing multiferroic and providing a promising strategy for developing magnetoelectric-coupled multiferroic devices.
  • 图 1  模拟模型 (a) 块体单胞PbTiO3的原子结构; (b) PbTiO3 Aurivillious型界面的构造示意图; (c) 上层和下层的剖面图; (d) PbTiO3中Aurivillious型界面的仿真模型, 其中n = 6

    Fig. 1.  Simulation model: (a) Atomic structure of bulk unit cell PbTiO3; (b) schematic illustration of the schematic diagram of PbTiO3 Aurivillious interface; (c) cross-section view of upper part and cross-section view of lower part; (d) simulation model of Aurivillious type interface in PbTiO3 with n = 6.

    图 2  四方PbTiO3的相图. 由A, B, CD组成的四边形区域显示了PbTiO3的稳定范围

    Fig. 2.  Phase diagram of tetragonal PbTiO3. The quadrilateral area composed of A, B, C, and D shows the stability range of PbTiO3.

    图 3  界面的铁电性 (a) PbO层中沿z轴的归一化Pb—O相对位移; (b) TiO2层中沿z轴的归一化Ti—O相对位移; (c) 每层的局域极化

    Fig. 3.  Ferroelectrixity of interface: (a) Normalized Pb—O relative displacements in the PbO layers along the z axis; (b) normalized Ti—O relative displacements in the TiO2 layers along the z axis; (c) the local polarization in each layer.

    图 4  界面的磁性 (a) 沿[001]方向初始磁性配置的PbTiO3中Aurivillius型界面周围的磁自旋密度分布, 其中紫色区域和黄色区域分别表示自旋密度为+0.005μB·Å–1和–0.005μB·Å–1的等值面; (b) 界面周围各原子层中O原子的磁矩

    Fig. 4.  Magnetic properties of interface: (a) Magnetic spin-density distribution around Aurivillious type interface in PbTiO3 for initial polarization configuration along the [001] direction, in which the purple area and yellow area represent the iso-surfaces of spin-densities of +0.005μB·Å–1 and –0.005μB·Å–1, respectively; (b) the magnetic moment of O atoms in each atomic layer around the interface.

    图 5  (a) PbTiO3中Aurivillius型的总态密度(DOS), 红色和蓝色线分别表示自旋朝上和自旋朝下的占据(未占据)态; (b) Aurivillius型界面中的电荷密度分布, 绿色区域表示电荷密度为0.01 Å–3的等值面. 层分辨的部分态密度, 红色和黑线分别表示O的2p轨道自旋朝上和O的2p轨道自旋朝下的占据(未占据)态, 蓝色和绿线分别表示Pb的6s轨道自旋朝上和Pb的6s轨道自旋朝下的占据(未占据)态

    Fig. 5.  (a) Total DOS for the Aurivillious-type interface in PbTiO3, the red and blue lines indicate the occupied (unoccupied) states of up-spin and down-spin, respectively; (b) charge density distribution in Aurivillius-type interface, the green area represents the iso-surface of charge densities of 0.01 Å–3. The layer resolved partial DOS, the red and black line indicate the occupied (unoccupied) states of O 2p up-spin and O 2p down-spin, respectively, the blue and green line indicate the occupied (unoccupied) states of Pb 6s up-spin and Pb 6s down-spin, respectively.

    图 6  Aurivillius型界面中不同初始极化配置下的磁自旋密度分布, 沿 (a) [00$ \bar{1} $]方向和 (b) [100]方向, 其中紫色区域和黄色区域分别表示自旋密度为+0.005μB·Å–1和–0.005μB·Å–1的等值面; (c) 沿[001]方向、[00$ \bar{1} $]方向和[100]方向的不同初始极化配置下每层的dPiz/dz

    Fig. 6.  Magnetic spin-density distribution in Aurivillius-type interface with the different initial polarization configuration along (a) the [00$ \bar{1} $] direction and (b) the [100] direction, in which the purple area and yellow area represent the iso-surfaces of spin-densities of +0.005μB·Å–1 and –0.005μB·Å–1, respectively; (c) the magnitude of dPiz/dz in each layer of the different initial polarization configuration along the [001] direction, the[00$ \bar{1} $] direction, and the [100] direction, respectively.

    图 A1  (a) Pb中心晶格; (b) Ti中心晶格; (c) PbO平面中的O中心晶格; (d) TiO2平面中的O中心晶格

    Fig. A1.  (a) Pb-centered lattice; (b) Ti-centered lattice; (c) O-centered lattice in the PbO plane; (d) O-centered lattice in the TiO2 plane.

    表 1  A, B, CD处的化学势数值

    Table 1.  The values of chemical potential for points A, B, C, and D, respectively.

    chemical potential/eV ΔμPb ΔμTi ΔμO μPb μTi μO
    A 0 –5.73 –2.28 –4.56 –17.69 –9.42
    B 0 –4.93 –2.54 –4.56 –16.90 –9.69
    C –2.28 –10.28 0 –6.84 –22.25 –7.14
    D –2.54 –10.02 0 –7.11 –21.98 –7.14
    下载: 导出CSV
  • [1]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar

    [2]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [3]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 物理学报 67 157507

    Yu B, Hu Z, Cheng Y, Peng B, Zhou Z, Liu M 2018 Acta Phys. Sin. 67 157507

    [4]

    H. Béa, M. Gajek, M. Bibes, A. Barthélémy 2008 J. Phys. Condens. Matter 20 434221Google Scholar

    [5]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer Nature) pp23–51

    [6]

    Spaldin N A, Fiebig M 2005 Science 309 5733

    [7]

    Zhang J, Xie Y, Ji K, Shen X 2024 Appl. Phys. Lett. 125 230503Google Scholar

    [8]

    周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 物理学报 67 157505

    Zhou L, Wang X, Zhang H, Shen X, Dong D, Long Y 2018 Acta Phys. Sin. 67 157505

    [9]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123Google Scholar

    [10]

    Wang Y, Hu J, Lin Y, Nan C W 2010 NPG Asia Mater. 2 61Google Scholar

    [11]

    Hill N A 2000 J. Phys. Chem. B 104 6694Google Scholar

    [12]

    Ji H, Yan Z, Zhou G, Wang X, Zhang J, Li Z, Kang P, Xu X 2020 Appl. Phys. Lett. 117 192402Google Scholar

    [13]

    Shimada T, Uratani Y, Kitamura T 2012 Appl. Phys. Lett. 100 162901Google Scholar

    [14]

    Gao L, Chen X, Qi J 2024 Appl. Phys. Lett. 125 212903Google Scholar

    [15]

    Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, Thompson C 2004 Science 304 5677

    [16]

    Wen Z, Li C, Wu D, Li A, Ming N 2013 Nat. Mater. 12 617Google Scholar

    [17]

    Xu T, Wu C, Zheng S, Wang Y, Wang J, Hirakata H, Kitamura T, Shimada T 2024 Phys. Rev. Lett. 132 086801Google Scholar

    [18]

    Xu T, Shimada T, Y. Araki, J. Wang, T. Kitamura 2015 Phys. Rev. B 92 104

    [19]

    Shimada T, Xu T, Uratani Y, Wang J, Kitamura T 2016 Nano Lett. 16 6774Google Scholar

    [20]

    Lin T, Gao A, Tang Z, Lin W, Sun M, Zhang Q, Wang X, Guo E, Lin G 2024 Chin. Phys. Lett. 41 047701Google Scholar

    [21]

    Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [22]

    Aleksandrov K, Beznosikov V 1997 Phys. Solid State 39 695Google Scholar

    [23]

    Choi W, Park B, Hwang J, Han G, Yang S, Lee H J, Lee S S, Jo J Y, Borisevich A Y, Jeong H Y, Oh S H, Lee J, Kim Y M 2024 Chin. Phys. B 33 096805Google Scholar

    [24]

    Neaton J B, Rabe K M 2003 Appl. Phys. Lett. 82 1586Google Scholar

    [25]

    Johnston K, Huang X, Neaton J B, Rabe K M 2005 Phys. Rev. B 71 100

    [26]

    Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Herme P, Gariglio S, Triscone J M, Ghosez P 2008 Nature 452 732Google Scholar

    [27]

    Aurivillius B 1949 Arkiv Kemi 1 463

    [28]

    Smolenskii G A, Isupov V A, Agranovskaya A I 1960 Phys. Solid State 1 1429

    [29]

    Subbarao E C 1961 J. Phys. Chem. Solids 23 665

    [30]

    Scott J F 2013 NPG Asia Mater. 5 e72Google Scholar

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [32]

    Li Z, Koval V, Mahajan A, Gao Z, Vecchini C, Stewart M, Cain M G, Tao K, Jia C, Viola G, Yan H 2020 Appl. Phys. Lett. 117 052903Google Scholar

    [33]

    Algueró M, Real R. P, Amorín H, Castro A 2022 Appl. Phys. Lett. 121 122904Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [36]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [37]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906Google Scholar

    [38]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202Google Scholar

    [39]

    Bilc D I, Orlando R, Shaltaf R, Rignanese G M, Iniguez J, Ghosez P 2008 Phys. Rev. B 77 165107Google Scholar

    [40]

    Shimada T, Ueda T, Wang J, Kitamura T 2013 Phys. Rev. B 87 174111Google Scholar

    [41]

    文志勤, 黄彬荣, 卢涛仪, 邹正光 2022 无机材料学报 37 787Google Scholar

    Wen Z, Huang B, Lu T, Zou Z 2022 J. Inorg. Mater. 37 787Google Scholar

    [42]

    Robertson J, Warren W L, Tuttle B A 1995 J. Appl. Phys. 77 3975Google Scholar

    [43]

    Mabud S, Glazer A M 1979 J. Appl. Crystallogr. 12 49Google Scholar

    [44]

    Xu T, Wang J, Shimada T, Kitamura T 2013 J. Phys. Condens. Matter 25 415901Google Scholar

    [45]

    Rondinelli J M, Stengel M, Spaldin N A 2008 Nat. Nano 3 46Google Scholar

    [46]

    Ahn C H, Bhattacharya A, Ventra M D, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D, Triscone J M 2006 Rev. Mod. Phys. 78 1185Google Scholar

    [47]

    Vaz C A F, Hoffman J, Segal Y, Reiner J W, Grober R D, Zhang Z, Ahn C H, Walker F J 2010 Phys. Rev. Lett. 104 127202Google Scholar

    [48]

    Redwing J M, Tischler M A, Flynn J S, Elhamri S, Ahoujja M, Newrock R S, Mitchel W C 1996 Appl. Phys. Lett. 69 963Google Scholar

  • [1] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20230132
    [2] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210572
    [3] 秦文静, 徐波, 孙宝珍, 刘刚. 原子吸附的二维CrI3铁磁半导体电学和磁学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210090
    [4] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, doi: 10.7498/aps.69.20191799
    [5] 张先飞, 王玲玲, 朱海, 曾诚. 自由流体层与多孔介质层界面的盐指现象的统一域法模拟. 物理学报, doi: 10.7498/aps.69.20200351
    [6] 王宇佳, 耿皖荣, 唐云龙, 朱银莲, 马秀良. 新型铁电拓扑结构的构筑及其亚埃尺度结构特性. 物理学报, doi: 10.7498/aps.69.20201718
    [7] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190575
    [8] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190067
    [9] 翟晓芳, 云宇, 孟德超, 崔璋璋, 黄浩亮, 王建林, 陆亚林. 铋层状氧化物单晶薄膜多铁性研究进展. 物理学报, doi: 10.7498/aps.67.20181159
    [10] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.65.077301
    [11] 唐杰, 张国英, 鲍君善, 刘贵立, 刘春明. 杂质S对Fe/Al2O3界面结合影响的第一性原理研究. 物理学报, doi: 10.7498/aps.63.187101
    [12] 刘晓旭, 殷景华, 程伟东, 卜文斌, 范勇, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响. 物理学报, doi: 10.7498/aps.60.056101
    [13] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究. 物理学报, doi: 10.7498/aps.60.037304
    [14] 王爱芬, 孙晓宇, 李文彬, 郑晓燕, 游胤涛. NPB/Alq3 界面激子拆分研究. 物理学报, doi: 10.7498/aps.59.6527
    [15] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.58.5653
    [16] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.193.1
    [17] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, doi: 10.7498/aps.58.3491
    [18] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, doi: 10.7498/aps.58.7227
    [19] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, doi: 10.7498/aps.57.4434
    [20] 刘平, 徐文兰, 李志锋, 缪中林, 陆卫. PbTiO3铁电相及顺电相的声子色散理论计算. 物理学报, doi: 10.7498/aps.50.239
计量
  • 文章访问数:  323
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-28
  • 修回日期:  2025-04-04
  • 上网日期:  2025-04-08

/

返回文章
返回