搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过冷液相区退火调控Ni-Fe-B-Si-P非晶态合金的微观结构与电学性能

丰睿 张忠一 陈春华 尚博林 李冬梅 余鹏

引用本文:
Citation:

过冷液相区退火调控Ni-Fe-B-Si-P非晶态合金的微观结构与电学性能

丰睿, 张忠一, 陈春华, 尚博林, 李冬梅, 余鹏

Microstructure and electrical properties of Ni-Fe-B-Si-P amorphous alloys controlled by supercooled liquid-phase annealing

FENG Rui, ZHANG Zhongyi, CHEN Chunhua, SHANG Bolin, LI Dongmei, YU Peng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 非晶态合金因其独特的长程无序结构与优异的物理性能使其成为材料物理领域的研究热点. 然而其在热作用影响下的复杂微观结构演变与电子输运机制仍有待深入研究. 本文通过熔体甩带法制备了Ni40Fe35B15Si7P3和Ni50Fe25B15Si7P3非晶合金带材, 并在过冷液相区内不同温度下进行退火处理. 结果表明, 过冷液相区内的退火使合金的短程有序度增强, 自由体积减小, 原子排列更致密化, 退火后合金的局部类晶体团簇体积分数增至26%—34%. 同时, 过冷液相区退火诱发的散射中心增大及内应力释放, 使合金的电阻率升高, 其中Ni40Fe35B15Si7P3合金电阻率从131.8 μΩ·cm增至217.0 μΩ·cm, 增大了64.6%. 在外加磁场下, 洛伦兹力引起的电子轨迹偏转与磁致伸缩效应使合金的电阻率进一步升高. 此外, 热激活会释放束缚电子且增强其散射效应, 使合金的载流子浓度上升, 迁移率下降. 本研究表明退火可以调控非晶合金的短程有序度及自由体积分布, 进而影响其电输运性能, 为设计高性能非晶合金电子器件提供了实验依据.
    Amorphous alloys have become a research hotpot in the field of materials science due to their unique long-range disordered structure and excellent physical properties. However, the complex microstructural evolution and electronic transport mechanisms of amorphous alloys under thermal effects still need in depth investigating. In this work, Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 amorphous alloy ribbons are prepared by the melt-spinning technique, and the as-cast samples are subjected to annealing treatments within the supercooled liquid region. The results show that annealing within the supercooled liquid region enhances the short-range order, reduces the free volume, and increases the atomic packing density of the alloys. The volume fractions of the local quasi-crystalline clusters in the annealed samples increase to 26%-34%. Furthermore, the increases in scattering centers and the release of internal stresses induced by the supercooled liquid region annealing lead to an increase in the electrical resistivity of the alloys. Specifically, the resistivity of the Ni40Fe35B15Si7P3 alloy increases from 131.8 μΩ·cm to 217.0 μΩ·cm, a increase of 64.6% . Under an applied magnetic field, the deflection of electron trajectories due to the Lorentz force and the magnetostriction effect further increases the resistivity of the alloys. Additionally, thermal activation releases the bound electrons and enhances their scattering, resulting in an increase in the carrier concentration and a decrease in the carrier mobility of the annealed alloys. This study demonstrates that annealing can effectively control the short-range order and free volume distribution of amorphous alloys, thereby influencing their electronic transport properties. The findings provide an experimental basis for designing high-performance amorphous alloy electronic devices.
  • 图 1  (a) Ni40Fe35B15Si7P3和(b) Ni50Fe25B15Si7P3合金退火前后的XRD图; (c) Ni40Fe35B15Si7P3和Ni50Fe25B15Si7P3合金退火前后的FWHM数值

    Fig. 1.  (a) XRD patterns of Ni40Fe35B15Si7P3 and (b) Ni50Fe25B15Si7P3 alloys before and after annealing; (c) FWHM of Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 alloys before and after annealing.

    图 2  (a) Ni40Fe35B15Si7P3和(b) Ni50Fe25B15Si7P3合金退火前后的DSC曲线图

    Fig. 2.  DSC curves of (a) Ni40Fe35B15Si7P3 and (b) Ni50Fe25B15Si7P3 alloys before and after annealing.

    图 3  退火前后合金SEM图像 (a) Ni40Fe35B15Si7P3; (b) A653; (c) Ni50Fe25B15Si7P3; (d) B673; (e) 与A653对应的EDS图

    Fig. 3.  SEM images of (a)Ni40Fe35B15Si7P3, (b)A653, (c) Ni50Fe25B15Si7P3, (d) B673 alloys before and after annealing; (e) EDS image corresponding to A653.

    图 4  (a) Ni40Fe35B15Si7P3, (b) A653, (c) Ni50Fe25B15Si7P3, (d) B673合金退火前后TEM图像, 插图为对应的SAED图像

    Fig. 4.  TEM images of (a) Ni40Fe35B15Si7P3, (b) A653, (c) Ni50Fe25B15Si7P3, and (d) B673 alloys before and after annealing with insets showing the corresponding SAED images.

    图 5  (a) Ni40Fe35B15Si7P3, (b) A653, (c) Ni50Fe25B15Si7P3, (d) B673合金TEM图的2D自相关映射图, 出现清晰条纹的图用红色方框标记, 对应局域类晶体结构

    Fig. 5.  2D autocorrelation mapping of the TEM images of (a) Ni40Fe35B15Si7P3, (b) A653, (c) Ni50Fe25B15Si7P3, (d) B673 alloys before and after annealing, with clearly defined striped patterns marked by red squares, corresponding to the local quasi-crystalline structures.

    图 6  (a) Ni40Fe35B15Si7P3和(b) Ni50Fe25B15Si7P3合金退火前后的归一化电阻率(ρT/ρ300 K)曲线图; (c) Ni40Fe35B15Si7P3和(d) Ni50Fe25B15Si7P3合金在1 T磁场下退火前后的归一化电阻率($ \rho $H/$ \rho $300 K)曲线图

    Fig. 6.  Normalized resistivity (ρT300 K) curves of (a) Ni40Fe35B15Si7P3 and (b) Ni50Fe25B15Si7P3 alloys before and after annealing; normalized resistivity ($ \rho $H/$ \rho $300 K) of (c) Ni40Fe35B15Si7P3 and (d) Ni50Fe25B15Si7P3 alloys before and after annealing under a 1 T magnetic field.

    图 7  (a) Ni40Fe35B15Si7P3和(b) Ni50Fe25B15Si7P3合金退火前后的室温载流子浓度与载流子迁移率曲线

    Fig. 7.  Room-temperature carrier concentration and carrier mobility curves of (a) Ni40Fe35B15Si7P3 and (b) Ni50Fe25B15Si7P3 alloys before and after annealing.

    表 1  不同样品退火前后的热力学参数

    Table 1.  Thermodynamic parameters of Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 alloys before and after annealing.

    Ni40Fe35B15Si7P3Tg/KNi50Fe25B15Si7P3Tg/K
    As-spun711.25As-spun702.13
    A643712.97B663703.56
    A653714.12B673704.96
    A663715.56B683706.05
    下载: 导出CSV

    表 2  两种合金退火前后的霍尔参数

    Table 2.  Hall parameters of of Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 alloys before and after annealing.

    Ni40Fe35B15Si7P3nH/
    (1020 cm–3)
    $ \mu $
    /(cm2·V–1)
    RH×103
    /(cm3·C–1)
    Ni50Fe25B15Si7P3nH×1020
    /cm–3
    $ \mu $
    /(cm2·V–1·s–1)
    RH×103
    /(cm3·C–1)
    As-spun1.40205.17–44.53As-spun1.37278.17–45.71
    A6431.47172.04–42.36B6631.44246.19–43.24
    A6531.50156.51–41.54B6731.48224.32–42.22
    A6631.73127.64–36.02B6831.50201.35–41.59
    下载: 导出CSV
  • [1]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [2]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243Google Scholar

    [3]

    Wu Y, Bei H, Wang Y L, Lu Z P, George E P, Gao Y F 2015 Int. J. Plasticity 71 136Google Scholar

    [4]

    王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 物理学报 73 217101Google Scholar

    Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101Google Scholar

    [5]

    Lu W B, He M F, Yu D, Xie X M, Wang H, Wang S, Yuan C G, Chen A 2021 Mater. Design 210 110027Google Scholar

    [6]

    Chen M 2011 Npg Asia Mater. 3 82Google Scholar

    [7]

    Shen P P, Yuan F S, Zhou H B, Hu J, Sun B A 2023 J. Alloy. Compd. 44 169168

    [8]

    Li X, Ren Q, Xu G J, Zhao A C, Duan L 2024 J. Mater. Sci-Mater. El. 35 564Google Scholar

    [9]

    Nai J W, Kang J X, Guo L 2015 Sci. China Mater. 58 44Google Scholar

    [10]

    Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G, Niu Q 2004 Phys. Rev. Lett. 92 037204Google Scholar

    [11]

    Liu W J, Zhang H X, Shi J A, Wang Z C, Song C, Wang X R, Chen N 2016 Nat. Commun. 7 13497Google Scholar

    [12]

    Wu M, Lou H B, Tse J S, Liu H Y, Pan Y M, Takahama K, Matsuoka T, Shimizu K, Jiang J Z 2016 Phys. Rev. B 94 054201Google Scholar

    [13]

    Zhang Y Q, Zhou L Y, Tao S Y, Jiao Y Z, Li J F, Zheng K M, Hu Y C, Fang K X, Song C, Zhong X Y 2021 Sci. China Mater. 64 2305Google Scholar

    [14]

    He S Y, Li Y G, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar

    [15]

    Mo S, Zeng J, Zhang H, Wu Y N, Liu T, Ni H W 2023 J. Mater. Sci. Technol. 143 189Google Scholar

    [16]

    Li X S, Su F C, Zhou J, Mao Y C, Yang J M, Xue Z Y, Ke H B, Sun B A, Wang W H, Bai H Y 2024 Intermetallics 166 108201Google Scholar

    [17]

    Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare. Metal Mat. Eng. 49 2904

    [18]

    Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke H B, Wang G, Shen J, Makino A, Wang W H 2022 J. Mater. Sci. Technol. 96 233Google Scholar

    [19]

    Jia J L, Wu Y, Shi L X, Wang R B, Guo W H, Bu H T, Shao Y, Chen N, Yao K F 2024 Mater. 17 1447Google Scholar

    [20]

    Zhang L K, Liu L M, Zhang R, Chen D, Ma G Z, Ye C G 2023 Mater. Res. Express 10 055201Google Scholar

    [21]

    Liu B B, Liu C Y, Jiang X, Zhen S Y, You L, Ye F 2021 Intermetallics 137 107283Google Scholar

    [22]

    Cao C C, Zhu L, Meng Y, Zhai X B, Wang Y G 2018 J. Magn. Magn. Mater. 456 274Google Scholar

    [23]

    Li X S, Su F C, Zhou J, Mao Y C, Yang J M, Xue Z Y, Ke H B, Sun B A, Wang W H, Bai H Y 2024 Intermetallics 166 108201Google Scholar

    [24]

    Wang C, Tang Y, Ouyang X P, Wang H K 2025 Mat. Sci. Eng. A 924 147843Google Scholar

    [25]

    Zhang S, Wei C, Yang L, Lv J W, Zhang H R, Shi Z L, Zhang X Y, Ma M Z. 2022 Mat. Sci. Eng. A 840 142978Google Scholar

    [26]

    吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平 2017 物理学报 66 176111Google Scholar

    Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lü Z P 2017 Acta Phys. Sin. 66 176111Google Scholar

    [27]

    Pan J, Duan F H 2021 Acta Metall. Sin. 57 439

    [28]

    张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏 2018 中国腐蚀与防护学报 38 478Google Scholar

    Zhang Z Y, Tang J N, Yu J, Wang X D, Huang L C, Zhou J W, Tang H, Zhang J K, Chen Y T, Cheng D P 2018 J. Chin. Soc. Corros. Prot. 38 478Google Scholar

    [29]

    Teusner M, Mata J, Sharma N 2022 Curr. Opin. Electroche. 34 100990Google Scholar

    [30]

    刘文胜, 刘书华, 马运柱, 张佳佳, 叶晓珊 2015 稀有金属材料与工程 44 2459

    Liu W S, Liu S H, Ma Y Z, Zhang J J, Ye X S 2015 Rare Met. Mater. Eng. 44 2459

    [31]

    Ström P, Primetzhofer D 2021 Nucl. Mater. Energy 27 100979Google Scholar

    [32]

    陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清 2014 物理学报 63 246801Google Scholar

    Chen X, Wang Y W, Wang X Y, An S D, Wang X B, Zhao Y Q 2014 Acta Phys. Sin. 63 246801Google Scholar

    [33]

    Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D, Lu J 2014 Sci. Rep-Uk. 4 4648Google Scholar

    [34]

    Wang Q, Liu C T, Yang Y, Dong Y D, Lu J 2011 Phys. Rev. Lett. 106 215505Google Scholar

    [35]

    Ezzat S S, Mani P D, Khaniya A, Kaden W, Gall D, Barmak K, Coffey K R 2019 J. Vac. Sci. Technol. A 37 031516Google Scholar

    [36]

    Guo Y M, Wang X C, Li X, Zhang T 2023 Mater. Lett. 336 133890Google Scholar

    [37]

    Yao X, Wang L Y, Shuai C J, Gao C D 2025 Mater. Lett. 384 138127Google Scholar

    [38]

    张广平, 李孟林, 吴细毛, 李春和, 罗雪梅 2014 材料研究学报 28 81Google Scholar

    Zhang G P, Li M L, Wu X M, Li C H, Luo X M 2014 Chin. J. Mater. Res. 28 81Google Scholar

  • [1] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响. 物理学报, doi: 10.7498/aps.72.20222389
    [2] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能. 物理学报, doi: 10.7498/aps.69.20201317
    [3] 张金帅, 黄秋实, 蒋励, 齐润泽, 杨洋, 王风丽, 张众, 王占山. 低温退火的X射线W/Si多层膜应力和结构性能. 物理学报, doi: 10.7498/aps.65.086101
    [4] 陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华. 后退火增强氢化非晶硅钝化效果的研究. 物理学报, doi: 10.7498/aps.64.198801
    [5] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, doi: 10.7498/aps.63.068102
    [6] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究. 物理学报, doi: 10.7498/aps.62.158101
    [7] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, doi: 10.7498/aps.62.118101
    [8] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆. ITO退火对GaN基LED电学特性的影响. 物理学报, doi: 10.7498/aps.61.137303
    [9] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 龚伟, 樊星. 高分子有机场效应晶体管中退火引起的自组织微观结构变化的研究. 物理学报, doi: 10.7498/aps.60.057201
    [10] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, doi: 10.7498/aps.60.066201
    [11] 张树玲, 孙剑飞, 邢大伟. 磁场退火对Co基熔体抽拉丝巨磁阻抗效应的影响. 物理学报, doi: 10.7498/aps.59.2068
    [12] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究. 物理学报, doi: 10.7498/aps.59.4253
    [13] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, doi: 10.7498/aps.58.7878
    [14] 蒋爱华, 肖剑荣, 王德安. 退火对含氮氟非晶碳膜结构及光学带隙的影响. 物理学报, doi: 10.7498/aps.57.6013
    [15] 尚淑珍, 邵建达, 沈 健, 易 葵, 范正修. 退火对电子束热蒸发193nm Al2O3/MgF2反射膜性能的影响. 物理学报, doi: 10.7498/aps.55.2639
    [16] 吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇, 翟同广. AA 2037新型连铸铝合金热轧板退火的正电子湮没研究. 物理学报, doi: 10.7498/aps.55.6129
    [17] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, doi: 10.7498/aps.55.6085
    [18] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响. 物理学报, doi: 10.7498/aps.50.1600
    [19] 郭栋, 蔡锴, 李龙土, 桂治轮. 电解有机溶液法在Si表面制备类金刚石薄膜及退火对其结构的影响. 物理学报, doi: 10.7498/aps.50.2413
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  344
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-21
  • 修回日期:  2025-04-03
  • 上网日期:  2025-04-10

/

返回文章
返回