-
非晶态合金因其独特的长程无序结构与优异的物理性能使其成为材料物理领域的研究热点. 然而其在热作用影响下的复杂微观结构演变与电子输运机制仍有待深入研究. 本文通过熔体甩带法制备了Ni40Fe35B15Si7P3和Ni50Fe25B15Si7P3非晶合金带材, 并在过冷液相区内不同温度下进行退火处理. 结果表明, 过冷液相区内的退火使合金的短程有序度增强, 自由体积减小, 原子排列更致密化, 退火后合金的局部类晶体团簇体积分数增至26%—34%. 同时, 过冷液相区退火诱发的散射中心增大及内应力释放, 使合金的电阻率升高, 其中Ni40Fe35B15Si7P3合金电阻率从131.8 μΩ·cm增至217.0 μΩ·cm, 增大了64.6%. 在外加磁场下, 洛伦兹力引起的电子轨迹偏转与磁致伸缩效应使合金的电阻率进一步升高. 此外, 热激活会释放束缚电子且增强其散射效应, 使合金的载流子浓度上升, 迁移率下降. 本研究表明退火可以调控非晶合金的短程有序度及自由体积分布, 进而影响其电输运性能, 为设计高性能非晶合金电子器件提供了实验依据.
-
关键词:
- Ni-Fe基非晶合金 /
- 退火 /
- 短程有序度 /
- 电学性能
Amorphous alloys have become a research hotpot in the field of materials science due to their unique long-range disordered structure and excellent physical properties. However, the complex microstructural evolution and electronic transport mechanisms of amorphous alloys under thermal effects still need in depth investigating. In this work, Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 amorphous alloy ribbons are prepared by the melt-spinning technique, and the as-cast samples are subjected to annealing treatments within the supercooled liquid region. The results show that annealing within the supercooled liquid region enhances the short-range order, reduces the free volume, and increases the atomic packing density of the alloys. The volume fractions of the local quasi-crystalline clusters in the annealed samples increase to 26%-34%. Furthermore, the increases in scattering centers and the release of internal stresses induced by the supercooled liquid region annealing lead to an increase in the electrical resistivity of the alloys. Specifically, the resistivity of the Ni40Fe35B15Si7P3 alloy increases from 131.8 μΩ·cm to 217.0 μΩ·cm, a increase of 64.6% . Under an applied magnetic field, the deflection of electron trajectories due to the Lorentz force and the magnetostriction effect further increases the resistivity of the alloys. Additionally, thermal activation releases the bound electrons and enhances their scattering, resulting in an increase in the carrier concentration and a decrease in the carrier mobility of the annealed alloys. This study demonstrates that annealing can effectively control the short-range order and free volume distribution of amorphous alloys, thereby influencing their electronic transport properties. The findings provide an experimental basis for designing high-performance amorphous alloy electronic devices.-
Keywords:
- Ni-Fe-based amorphous alloys /
- annealing /
- short-range order /
- electrical properties
-
图 5 (a) Ni40Fe35B15Si7P3, (b) A653, (c) Ni50Fe25B15Si7P3, (d) B673合金TEM图的2D自相关映射图, 出现清晰条纹的图用红色方框标记, 对应局域类晶体结构
Fig. 5. 2D autocorrelation mapping of the TEM images of (a) Ni40Fe35B15Si7P3, (b) A653, (c) Ni50Fe25B15Si7P3, (d) B673 alloys before and after annealing, with clearly defined striped patterns marked by red squares, corresponding to the local quasi-crystalline structures.
图 6 (a) Ni40Fe35B15Si7P3和(b) Ni50Fe25B15Si7P3合金退火前后的归一化电阻率(ρT/ρ300 K)曲线图; (c) Ni40Fe35B15Si7P3和(d) Ni50Fe25B15Si7P3合金在1 T磁场下退火前后的归一化电阻率($ \rho $H/$ \rho $300 K)曲线图
Fig. 6. Normalized resistivity (ρT/ρ300 K) curves of (a) Ni40Fe35B15Si7P3 and (b) Ni50Fe25B15Si7P3 alloys before and after annealing; normalized resistivity ($ \rho $H/$ \rho $300 K) of (c) Ni40Fe35B15Si7P3 and (d) Ni50Fe25B15Si7P3 alloys before and after annealing under a 1 T magnetic field.
表 1 不同样品退火前后的热力学参数
Table 1. Thermodynamic parameters of Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 alloys before and after annealing.
Ni40Fe35B15Si7P3 Tg/K Ni50Fe25B15Si7P3 Tg/K As-spun 711.25 As-spun 702.13 A643 712.97 B663 703.56 A653 714.12 B673 704.96 A663 715.56 B683 706.05 表 2 两种合金退火前后的霍尔参数
Table 2. Hall parameters of of Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 alloys before and after annealing.
Ni40Fe35B15Si7P3 nH/
(1020 cm–3)$ \mu $
/(cm2·V–1)RH×103
/(cm3·C–1)Ni50Fe25B15Si7P3 nH×1020
/cm–3$ \mu $
/(cm2·V–1·s–1)RH×103
/(cm3·C–1)As-spun 1.40 205.17 –44.53 As-spun 1.37 278.17 –45.71 A643 1.47 172.04 –42.36 B663 1.44 246.19 –43.24 A653 1.50 156.51 –41.54 B673 1.48 224.32 –42.22 A663 1.73 127.64 –36.02 B683 1.50 201.35 –41.59 -
[1] Wang W H 2012 Prog. Mater. Sci. 57 487
Google Scholar
[2] Inoue A, Takeuchi A 2011 Acta Mater. 59 2243
Google Scholar
[3] Wu Y, Bei H, Wang Y L, Lu Z P, George E P, Gao Y F 2015 Int. J. Plasticity 71 136
Google Scholar
[4] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 物理学报 73 217101
Google Scholar
Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101
Google Scholar
[5] Lu W B, He M F, Yu D, Xie X M, Wang H, Wang S, Yuan C G, Chen A 2021 Mater. Design 210 110027
Google Scholar
[6] Chen M 2011 Npg Asia Mater. 3 82
Google Scholar
[7] Shen P P, Yuan F S, Zhou H B, Hu J, Sun B A 2023 J. Alloy. Compd. 44 169168
[8] Li X, Ren Q, Xu G J, Zhao A C, Duan L 2024 J. Mater. Sci-Mater. El. 35 564
Google Scholar
[9] Nai J W, Kang J X, Guo L 2015 Sci. China Mater. 58 44
Google Scholar
[10] Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G, Niu Q 2004 Phys. Rev. Lett. 92 037204
Google Scholar
[11] Liu W J, Zhang H X, Shi J A, Wang Z C, Song C, Wang X R, Chen N 2016 Nat. Commun. 7 13497
Google Scholar
[12] Wu M, Lou H B, Tse J S, Liu H Y, Pan Y M, Takahama K, Matsuoka T, Shimizu K, Jiang J Z 2016 Phys. Rev. B 94 054201
Google Scholar
[13] Zhang Y Q, Zhou L Y, Tao S Y, Jiao Y Z, Li J F, Zheng K M, Hu Y C, Fang K X, Song C, Zhong X Y 2021 Sci. China Mater. 64 2305
Google Scholar
[14] He S Y, Li Y G, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G 2020 Sci. Adv. 6 eaaz8423
Google Scholar
[15] Mo S, Zeng J, Zhang H, Wu Y N, Liu T, Ni H W 2023 J. Mater. Sci. Technol. 143 189
Google Scholar
[16] Li X S, Su F C, Zhou J, Mao Y C, Yang J M, Xue Z Y, Ke H B, Sun B A, Wang W H, Bai H Y 2024 Intermetallics 166 108201
Google Scholar
[17] Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare. Metal Mat. Eng. 49 2904
[18] Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke H B, Wang G, Shen J, Makino A, Wang W H 2022 J. Mater. Sci. Technol. 96 233
Google Scholar
[19] Jia J L, Wu Y, Shi L X, Wang R B, Guo W H, Bu H T, Shao Y, Chen N, Yao K F 2024 Mater. 17 1447
Google Scholar
[20] Zhang L K, Liu L M, Zhang R, Chen D, Ma G Z, Ye C G 2023 Mater. Res. Express 10 055201
Google Scholar
[21] Liu B B, Liu C Y, Jiang X, Zhen S Y, You L, Ye F 2021 Intermetallics 137 107283
Google Scholar
[22] Cao C C, Zhu L, Meng Y, Zhai X B, Wang Y G 2018 J. Magn. Magn. Mater. 456 274
Google Scholar
[23] Li X S, Su F C, Zhou J, Mao Y C, Yang J M, Xue Z Y, Ke H B, Sun B A, Wang W H, Bai H Y 2024 Intermetallics 166 108201
Google Scholar
[24] Wang C, Tang Y, Ouyang X P, Wang H K 2025 Mat. Sci. Eng. A 924 147843
Google Scholar
[25] Zhang S, Wei C, Yang L, Lv J W, Zhang H R, Shi Z L, Zhang X Y, Ma M Z. 2022 Mat. Sci. Eng. A 840 142978
Google Scholar
[26] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平 2017 物理学报 66 176111
Google Scholar
Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lü Z P 2017 Acta Phys. Sin. 66 176111
Google Scholar
[27] Pan J, Duan F H 2021 Acta Metall. Sin. 57 439
[28] 张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏 2018 中国腐蚀与防护学报 38 478
Google Scholar
Zhang Z Y, Tang J N, Yu J, Wang X D, Huang L C, Zhou J W, Tang H, Zhang J K, Chen Y T, Cheng D P 2018 J. Chin. Soc. Corros. Prot. 38 478
Google Scholar
[29] Teusner M, Mata J, Sharma N 2022 Curr. Opin. Electroche. 34 100990
Google Scholar
[30] 刘文胜, 刘书华, 马运柱, 张佳佳, 叶晓珊 2015 稀有金属材料与工程 44 2459
Liu W S, Liu S H, Ma Y Z, Zhang J J, Ye X S 2015 Rare Met. Mater. Eng. 44 2459
[31] Ström P, Primetzhofer D 2021 Nucl. Mater. Energy 27 100979
Google Scholar
[32] 陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清 2014 物理学报 63 246801
Google Scholar
Chen X, Wang Y W, Wang X Y, An S D, Wang X B, Zhao Y Q 2014 Acta Phys. Sin. 63 246801
Google Scholar
[33] Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D, Lu J 2014 Sci. Rep-Uk. 4 4648
Google Scholar
[34] Wang Q, Liu C T, Yang Y, Dong Y D, Lu J 2011 Phys. Rev. Lett. 106 215505
Google Scholar
[35] Ezzat S S, Mani P D, Khaniya A, Kaden W, Gall D, Barmak K, Coffey K R 2019 J. Vac. Sci. Technol. A 37 031516
Google Scholar
[36] Guo Y M, Wang X C, Li X, Zhang T 2023 Mater. Lett. 336 133890
Google Scholar
[37] Yao X, Wang L Y, Shuai C J, Gao C D 2025 Mater. Lett. 384 138127
Google Scholar
[38] 张广平, 李孟林, 吴细毛, 李春和, 罗雪梅 2014 材料研究学报 28 81
Google Scholar
Zhang G P, Li M L, Wu X M, Li C H, Luo X M 2014 Chin. J. Mater. Res. 28 81
Google Scholar
计量
- 文章访问数: 344
- PDF下载量: 15
- 被引次数: 0