搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多效应铌酸钾钠基透明铁电陶瓷的制备及性能

刘泳 徐志军 范立群 伊文涛 闫春燕 马杰 王坤鹏

引用本文:
Citation:

多效应铌酸钾钠基透明铁电陶瓷的制备及性能

刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏

Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics

Liu Yong, Xu Zhi-Jun, Fan Li-Qun, Yi Wen-Tao, Yan Chun-Yan, Ma Jie, Wang Kun-Peng
PDF
HTML
导出引用
  • 透明铁电陶瓷是一类具有电光效应的功能陶瓷, 由于其兼具传统陶瓷耐高温、抗腐蚀、高硬度以及优异的机械性能等特性, 从而成为光电领域中的关键材料. 而当前应用较多的是对环境危害较大的铅基透明铁电陶瓷, 因此开发兼具光效应和电效应的无铅透明铁电陶瓷成为研究热点之一. 本文在铌酸钾钠基无铅压电陶瓷掺杂改性研究的基础上, 采用传统的固相合成法, 制备了铌酸钾钠基无铅透明铁电陶瓷(K0.5Na0.5)0.94–3xLi0.06LaxNb0.95Ta0.05O3 (KNLTN-Lax; x = 0, 0.01, 0.015, 0.02), 并对其晶体结构、微观形貌、透过率和电学性能进行了研究分析. 研究结果表明, La3+掺杂提高了铌酸钾钠基陶瓷的透过率, 掺杂量x = 0.02的陶瓷样品在可见光范围透过率达到50%, 在红外光附近的透过率则接近60%. La3+掺杂量x = 0.01时压电常数(d33)达到110 pC/N, 机电耦合系数(kp)达到0.267. 此外陶瓷样品具有明显的铁电体特征, 居里温度高于400 ℃, 呈现出理想的驰豫铁电体特征, 是一种有望取代铅基透明铁电陶瓷的环境友好型无铅透明铁电陶瓷.
    Traditional transparent materials, including glasses and polymers, are chemically unstable and mechanically weak. Single crystals of some inorganic materials are also optically transparent, which are more stable than glasses and polymers. The fabrication of crystals, however, is relatively slow. Fortunately, transparent ceramics emerge as a promising candidate. Transparent ferroelectric ceramic is a kind of transparent ceramic with electro-optic effect, which also has excellent characteristics of conventional ceramics with excellent mechanical properties, resistance to high temperature, resistance against corrosion, and high hardness. Lead based transparent ferroelectric ceramic dominates this field for many years due to its superior electro-optic effect. Owing to the high toxicity of lead oxide, however, its development is significantly hampered. Therefore, it is greatly urgent to develop the lead-free transparent ferroelectric ceramics with excellent properties to replace the traditional lead based ceramics. In this paper, (K0.5Na0.5)0.94–3xLi0.06LaxNb0.95Ta0.05O3 (KNLTN-Lax; x = 0, 0.01, 0.015, 0.02) lead-free transparent ferroelectric materials are fabricated by the conventional solid state reaction method and ordinary sintering process. The dependence of microstructure, phase structure, optical transmittance and electrical properties of the ceramic on composition are systemically investigated. The transparent ferroelectric ceramic with relaxor-behavior is obtained at x = 0.02. The optical transmittance of the ceramic near infrared region is as high as 60%. Meanwhile, the electrical properties of the ceramic at x = 0.01 still maintains a relatively high level (d33 = 110 pC/N, kp = 0.267). In addition, the Curie temperature for each of all the samples is higher than 400 ℃. These results suggest that this material might be a novel and promising lead-free material that could be used in a large variety of electro-optical devices.
      通信作者: 刘泳, liuyong2049@126.com
      Corresponding author: Liu Yong, liuyong2049@126.com
    [1]

    兰国政 2008 化学工程与装备 1 46Google Scholar

    Lan G Z 2008 Chem. Eng. Equip. 1 46Google Scholar

    [2]

    许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页

    Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)

    [3]

    Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518Google Scholar

    [4]

    Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426Google Scholar

    [5]

    Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674Google Scholar

    [6]

    Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352Google Scholar

    [7]

    Haertling G H 1987 Ferroelectrics 75 25Google Scholar

    [8]

    Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40Google Scholar

    [9]

    Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738Google Scholar

    [10]

    Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61Google Scholar

    [11]

    Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057Google Scholar

    [12]

    Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573Google Scholar

    [13]

    Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249Google Scholar

    [14]

    Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159Google Scholar

    [15]

    Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565Google Scholar

    [16]

    Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463Google Scholar

    [17]

    Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21Google Scholar

    [18]

    李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)

    Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)

    [19]

    Jian L, Wayman C M 1995 Acta Mater. 43 3893Google Scholar

    [20]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [21]

    Zhang P, Zhao Y G 2015 Mater. Lett. 161 620Google Scholar

    [22]

    杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)

    Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)

    [23]

    耿志明 2015 硕士学位论文 (常州: 常州大学)

    Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [24]

    Thomas N W 1990 J. Phys. Chem. Solids 51 1419Google Scholar

    [25]

    郝继功 2010 硕士学位论文 (聊城: 聊城大学)

    Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)

    [26]

    刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)

    Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)

    [27]

    Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55Google Scholar

  • 图 1  KNLTN-Lax陶瓷的XRD图谱

    Fig. 1.  XRD patterns of KNLTN-Lax ceramics.

    图 2  KNLTN-Lax陶瓷的SEM图

    Fig. 2.  SEM images of KNLTN-Lax ceramics.

    图 3  KNLTN-Lax陶瓷的密度和相对密度

    Fig. 3.  Density and relative density of KNLTN-Lax ceramics.

    图 4  KNLTN-Lax陶瓷的透过率

    Fig. 4.  Optical transmittance of KNLTN-Lax ceramics.

    图 5  KNLTN-Lax陶瓷的数码照片

    Fig. 5.  Digital pictures of KNLTN-Lax ceramics.

    图 6  室温下KNLTN-Lax陶瓷的电滞回线

    Fig. 6.  P-E hysteresis loops of KNLTN-Lax ceramics in room temperature.

    图 7  KNLTN-Lax陶瓷的介电常数在不同测试频率下随温度的变化

    Fig. 7.  Temperature dependence of dielectric constant for KNLTN-Lax ceramics measured at different frequency.

    图 8  10 kHz下KNLTN-Lax陶瓷的介电常数倒数与温度的关系

    Fig. 8.  Inverse dielectric constant (1/εr) as a function of temperature at 10 kHz for KNLTN-Lax ceramics.

    图 9  KNLTN-Lax陶瓷的log(1/ε–1/εm)与log(TTm)的关系

    Fig. 9.  Plot of log(1/ε–1/εm) as a function of log(TTm) for KNLTN-Lax ceramics.

    图 10  KNLTN-Lax陶瓷的压电常数、机电耦合系数随x的变化

    Fig. 10.  The d33 and kp of KNLTN-Lax ceramics as a function of x.

    表 1  KNLTN-Lax陶瓷的晶胞参数

    Table 1.  Lattice parameters of KNLTN-Lax ceramics.

    KNLTN-Laxa标准差b标准差c标准差
    x = 04.001340.003273.926090.004243.960780.02185
    x = 0.013.967850.007073.967850.007073.892680.07532
    x = 0.0153.962250.003933.962250.003933.960670.04487
    x = 0.023.963680.002293.963680.002294.011920.02727
    下载: 导出CSV

    表 2  KNLTN-Lax陶瓷在10 kHz下的Tcw, Tm, ΔTmγ的数值

    Table 2.  The parameters Tcw, Tm, ΔTm and γ for the ceramics at 10 kHz.

    x00.010.0150.02
    Tcw433443440437
    Tm427421408403
    ΔTm6223234
    γ1.4241.6241.7141.918
    下载: 导出CSV
  • [1]

    兰国政 2008 化学工程与装备 1 46Google Scholar

    Lan G Z 2008 Chem. Eng. Equip. 1 46Google Scholar

    [2]

    许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页

    Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)

    [3]

    Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518Google Scholar

    [4]

    Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426Google Scholar

    [5]

    Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674Google Scholar

    [6]

    Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352Google Scholar

    [7]

    Haertling G H 1987 Ferroelectrics 75 25Google Scholar

    [8]

    Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40Google Scholar

    [9]

    Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738Google Scholar

    [10]

    Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61Google Scholar

    [11]

    Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057Google Scholar

    [12]

    Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573Google Scholar

    [13]

    Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249Google Scholar

    [14]

    Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159Google Scholar

    [15]

    Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565Google Scholar

    [16]

    Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463Google Scholar

    [17]

    Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21Google Scholar

    [18]

    李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)

    Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)

    [19]

    Jian L, Wayman C M 1995 Acta Mater. 43 3893Google Scholar

    [20]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [21]

    Zhang P, Zhao Y G 2015 Mater. Lett. 161 620Google Scholar

    [22]

    杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)

    Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)

    [23]

    耿志明 2015 硕士学位论文 (常州: 常州大学)

    Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [24]

    Thomas N W 1990 J. Phys. Chem. Solids 51 1419Google Scholar

    [25]

    郝继功 2010 硕士学位论文 (聊城: 聊城大学)

    Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)

    [26]

    刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)

    Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)

    [27]

    Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55Google Scholar

  • [1] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [2] 徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲. Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响. 物理学报, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [3] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展. 物理学报, 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [4] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [5] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] 李瑶, 苏桐, 雷凡, 徐能, 盛立志, 赵宝升. 等离子体中X射线透过率分析及潜在通信应用研究. 物理学报, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [8] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究. 物理学报, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [9] 张滨, 杨银堂, 李跃进, 徐小波. SOI SiGe HBT电学性能研究. 物理学报, 2012, 61(23): 238502. doi: 10.7498/aps.61.238502
    [10] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [11] 王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣. 铌酸钾钠基无铅透明陶瓷制备及性能. 物理学报, 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [12] 赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓. A位等价与非等价取代对(K0.5Na0.5)NbO3陶瓷极化的影响. 物理学报, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [13] 潘佳奇, 朱承泉, 李育仁, 兰伟, 苏庆, 刘雪芹, 谢二庆. 非化学计量比靶材溅射制备Cu-Al-O薄膜的光学电学性质研究. 物理学报, 2011, 60(11): 117307. doi: 10.7498/aps.60.117307
    [14] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [15] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究. 物理学报, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [16] 杨义发, 李玉华, 龙华, 陆培祥, 杨光, 郑启光. 氧压对飞秒激光沉积ZnO/Si(100)薄膜光学性能的影响. 物理学报, 2009, 58(4): 2785-2791. doi: 10.7498/aps.58.2785
    [17] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [18] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [19] 王林军, 刘健敏, 苏青峰, 史伟民, 夏义本. 金刚石膜α粒子探测器的电学性能研究. 物理学报, 2006, 55(5): 2518-2522. doi: 10.7498/aps.55.2518
    [20] 谈 斌, 李智勇, 李世忱. 非线性光纤环形镜的脉冲透过特性研究. 物理学报, 2004, 53(9): 3071-3076. doi: 10.7498/aps.53.3071
计量
  • 文章访问数:  8366
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-12
  • 修回日期:  2020-08-24
  • 上网日期:  2020-12-10
  • 刊出日期:  2020-12-20

/

返回文章
返回