搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁掺杂多孔氧化铟的NO2传感特性

刘志福 李培 程铁栋 黄文

引用本文:
Citation:

铁掺杂多孔氧化铟的NO2传感特性

刘志福, 李培, 程铁栋, 黄文

NO2 sensing properties of porous Fe-doped indium oxide

Liu Zhi-Fu, Li Pei, Cheng Tie-Dong, Huang Wen
PDF
HTML
导出引用
  • 研究NO2传感器材料特性和工作机理, 对监测大气污染及人体健康保护有重要意义. 本文采用水热法合成了铁掺杂的多孔In2O3纳米颗粒, 并基于上述纳米颗粒制备了NO2传感器. 运用X射线衍射仪、扫描电子显微镜、透射电子显微镜和比表面积测试对所制备的纳米颗粒进行微观形貌表征, 同时对传感器性能包括温度特性、响应-恢复特性、选择性和稳定性等进行研究. 研究发现, 当In和Fe摩尔比为9∶1时, 由铁掺杂多孔In2O3纳米颗粒制作的传感器对NO2气体具有优秀的选择性和较短的响应-恢复时间. 在260 ℃的工作温度下, 传感器对浓度为50 ppm (1 ppm = 1 mg/L)的NO2气体的灵敏度值为960.5, 响应时间和恢复时间分别为5和6 s. 形貌测试结果表明, 采用Span-40做活性剂制备的铁掺杂In2O3纳米颗粒为边长50—200 nm的方形结构, 其中分布大量细小孔洞, 这是导致大的比表面积和高灵敏度的主要原因之一. 同时, 从空间电荷、内建势垒和掺杂前后能带变化等理论出发, 对所制备传感器的传感机理进行了分析.
    It is of great significance to study the characteristics and working mechanism of NO2 sensor material for monitoring air pollution and protecting human health. As a metal oxide semiconductor material with simple preparation, low cost and good long-term stability, In2O3 has been widely studied in the detection of NO2. In order to explore the influence of Fe content on the gas sensing properties of porous In2O3 material, porous Fe-doped In2O3 nanoparticles are synthesized by the hydrothermal method, and the NO2 sensor is fabricated by using the above nanoparticles. The X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy and specific surface area measurement are used to characterize the micro morphology of the prepared nanoparticles in this paper, while the sensor performance is studied, including temperature, response recovery, selectivity and stability. In most samples, Fe atoms are completely doped into the In2O3 lattice as indicated by the XRD results. The SEM results show that the Fe-doped In2O3 nanoparticles prepared with Span-40 as activators are square in size of 50–200 nm, and a large number of small pores are distributed in it, which are also observed in the N2 adsorption/desorption experiment, this is one of the main reasons for the large specific surface area and high sensitivity of the nano materials. Studying the performance of the sensor, we find that when the molar ratio of In∶Fe is 9∶1, the sensor made of porous Fe-doped In2O3 nanoparticles has an excellent selectivity and short response recovery time for NO2 gas. The sensitivity of the sensor to 50-ppm-concentration (1 ppm = 1 mg/L) NO2 can reach 960.5 at 260 ℃, and the response time and recovery time are 5 s and 6 s respectively. Based on the theory of space charge and the knowledge of built-in barrier and energy band change before and after doping, the mechanism of the sensor is analyzed.
      通信作者: 程铁栋, chengtiedong@126.com
    • 基金项目: 国家自然科学基金(批准号: 61971108, 61804023)和江西省教育厅科学技术研究项目 (批准号: GJJ180485)资助的课题
      Corresponding author: Cheng Tie-Dong, chengtiedong@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971108, 61804023) and the Science and Technology Research Program of the Education Department of Jiangxi Province, China (Grant No. GJJ180485)
    [1]

    Xu X M, Zhang H J, Diao Q, Zhu Y S, Yang G 2019 Mater. Res. Express 6 17Google Scholar

    [2]

    Bo Z, Guo X Z, Wei X, Yang H C, Yan J H, Cen K F 2019 Physica E 109 156Google Scholar

    [3]

    Borgohain R, Das R, Mondal B, Yordsri V, Thanachayanont C, Baruah S 2018 IEEE Sens. J. 18 7203Google Scholar

    [4]

    赵博硕, 强晓永, 秦岳, 胡明 2018 物理学报 67 058101Google Scholar

    Zhao B S, Qiang X Y, Qin Y, Hu M 2018 Acta Phys. Sin. 67 058101Google Scholar

    [5]

    Zhou P F, Shen Y B, Lu W, Zhao S K, Li T T, Zhong X X, Cui B Y, Wei D Z, Zhang Y H 2020 J. Alloys Compd. 828 154395Google Scholar

    [6]

    Hung N M, Hieu N M, Chinh N D, Hien T T, Quang N D, Majumder S, Choi G, Kim C, Kim D 2020 Sens. Actuators, B 313 128001Google Scholar

    [7]

    Chen K X, Lu H, Li G, Zhang J N, Tian Y H, Gao Y, Guo Q M, Lu H B, Gao J Z 2020 Sens. Actuator, B 308 127716Google Scholar

    [8]

    Nam B, Ko T K, Hyun S K, Lee C 2019 Nano Converg. 6 40Google Scholar

    [9]

    Shen Y B, Zhong X X, Zhang J, Li T T, Zhao S K, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2019 Appl. Surf. Sci. 498 143873Google Scholar

    [10]

    Pawar K K, Shaikh J S, Mali S S, Navale Y H, Patil V B, Hong C K, Patil P S 2019 J. Alloys Compd. 806 726Google Scholar

    [11]

    Yang W, Chen H T, Li C L, Meng H 2020 Mater. Lett. 271 127782Google Scholar

    [12]

    Park B G, Reddeppa M, Kim Y H, Kim S G, Kim M D 2020 Nanotechnology 31 335503Google Scholar

    [13]

    Zhao S K, Shen Y B, Zhou P F, Hao F L, Xu X Y, Gao S L, Wei D Z, Ao Y X, Shen Y S 2020 Sens. Actuator, B 308 127729Google Scholar

    [14]

    Bi H S, Shen Y B, Zhao S K, Zhou P F, Gao S L, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2020 Vacuum 172 109086Google Scholar

    [15]

    Cheng M, Wu Z P, Liu G N, Zhao L J, Gao Y, Li S, Zhang B, Yan X, Lu G Y 2020 Sens. Actuator, B 304 127272Google Scholar

    [16]

    Ri J S, Li X W, Shao C L, Liu Y, Han C H, Li X H, Liu Y C 2020 Sens. Actuator, B 317 128194Google Scholar

    [17]

    Sabry R S, Agool I R, Abbas A M 2019 Silicon 11 2475Google Scholar

    [18]

    Lee O H, Tseng W J 2019 J. Mater. Sci.-Mater. Electron. 30 15145Google Scholar

    [19]

    Inyawilert K, Channei D, Tamaekong N, Liewhiran C, Wisitsoraat A, Tuantranont A, Phanichphant S 2016 J. Nanopart. Res. 18 40Google Scholar

    [20]

    Yoo Y K, Xue Q Z, Lee H C, Cheng S F, Xiang X D, Dionne G F, Xu S F, He J, Chu Y S, Preite S D, Lofland S E, Takeuchi I 2005 Appl. Phys. Lett. 86 042506Google Scholar

    [21]

    Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S 2008 Microporous Mesoporous Mater. 109 84Google Scholar

    [22]

    Cao M H, Wang Y D, Chen T, Antonietti M, Niederberger M 2008 Chem. Mater. 20 5781Google Scholar

    [23]

    Jia X, Fan H 2010 Mater. Res. Bull. 45 1496Google Scholar

    [24]

    Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong V, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S 2011 Sens. Actuator, B 160 580Google Scholar

    [25]

    Bai S L, Zhang K W, Luo R X, Li D Q, Chen A F, Liu C C 2012 J. Mater. Chem. 22 12643Google Scholar

    [26]

    Xiao B X, Zhao Q, Wang D X, Ma G S, Zhang M Z 2017 New J. Chem. 41 8530Google Scholar

    [27]

    Zhao J, Yang T L, Liu Y P, Wang Z Y, Li X W, Sun Y F, Du Y, Li Y C, Lu G Y 2014 Sens. Actuator, B 191 806Google Scholar

    [28]

    Han D M, Zhai L L, Gu F B, Wang Z H 2018 Sens. Actuator, B 262 655Google Scholar

    [29]

    Hu J, Liang Y F, Sun Y J, Zhao Z T, Zhang M, Li P W, Zhang W D, Chen Y, Zhuiykov S 2017 Sens. Actuator, B 252 116Google Scholar

    [30]

    Fahed C, Qadri S B, Kim H, Piqué A, Miller M, Mahadik N A, Rao M V, Osofsky M 2010 Phys. Status Solidi C 7 2298Google Scholar

  • 图 1  传感器灵敏度测量示意图 (a) 传感器结构图; (b) 传感测试系统

    Fig. 1.  Diagram used to measure the sensitivity of sensor: (a) Structure of sensor; (b) sensor test system.

    图 2  Fe掺杂In2O3的XRD图谱

    Fig. 2.  XRD patterns of Fe-doped In2O3.

    图 3  SEM图像 (a) 样品1; (b) 样品2; (c) 样品3; (d) 样品4; (e) 样品5; (f) 样品6

    Fig. 3.  SEM images: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5; (f) S6.

    图 4  (a) 样品4的TEM图像; (b) 样品4的EDS光谱和SAED图案

    Fig. 4.  (a) TEM image of S4; (b) EDS spectroscopy and SAED pattern taken from S4.

    图 5  (a) 样品1的N2吸附/脱附曲线; (b) 样品1的孔径分布; (c) 样品4的N2吸附/脱附曲线; (d) 样品4的孔径分布

    Fig. 5.  N2 adsorption/desorption curves of (a) S1 and (c) S4; the pore size distribution of (b) S1 and (d) S4.

    图 6  掺杂In2O3结构形成机理图

    Fig. 6.  Schematic illustrating the formation mechanism of the doped In2O3 structures.

    图 7  (a) 6种传感器在温度为260 ℃时放置在浓度为5−100 ppm的NO2下的气体响应; (b) 样品1−样品6的比表面积

    Fig. 7.  (a) Gas response of the 6 sensors exposed to NO2 at concentrations ranging from 5 ppm to 100 ppm at 260 °C; (b) surface area of S1−S6.

    图 8  样品4气体响应随温度的变化 (a) 不同工作温度下的典型响应和恢复曲线; (b) 不同温度下对50 ppm NO2的气体响应

    Fig. 8.  Gas response of S4 as a function of temperature: (a) Typical response and recovery curves at different working temperatures; (b) gas response to 50 ppm NO2 at different working temperatures.

    图 9  基于样品4制作的传感器在260 ℃时对NO2气体的响应-恢复曲线 (a)气体浓度范围为5−100 ppm; (b) 气体浓度为50 ppm

    Fig. 9.  Gas response-recovery of the sensor based on S4 exposed to NO2 at 260 °C: (a) Gas concentrations ranging from 5 ppm to 100 ppm; (b) gas concentration is 50 ppm.

    图 10  在260 ℃时样品4对浓度为50 ppm不同试验气体的灵敏度

    Fig. 10.  Selectivity of S4 to different test gases with a concentration of 50 ppm at 260 °C.

    图 11  在260 ℃时Fe掺杂In2O3传感器(S4)对浓度为50 ppm的NO2的稳定性测试(插图为S4在(a)第1天和(b) 第90天的气体响应)

    Fig. 11.  Stability of the Fe-doped In2O3 structures (S4) sensor to NO2 with a concentration of 50 ppm at 260 °C (inset: gas response of S4 for (a) the first day and (b) the 90th day).

    图 12  (a) 反应示意图; (b) 传感机理图; (c) 能带图

    Fig. 12.  (a) Schematic diagram; (b) gas sensing mechanism; (c) the band diagram.

    表 1  样品原材料组成表

    Table 1.  Composition of sample raw materials.

    样品编号组成及用量/gIn/Fe摩尔比
    In(NO3)3·4.5H2OFe(NO3)3·9H2OSpan-40
    样品1 (S1)0.572900.6030
    样品2 (S2)0.57290.12120.60305∶1
    样品3 (S3)0.57290.08660.60307∶1
    样品4 (S4)0.57290.06730.60309∶1
    样品5 (S5)0.57290.05050.603012∶1
    样品6 (S6)0.57290.04040.603015∶1
    下载: 导出CSV
  • [1]

    Xu X M, Zhang H J, Diao Q, Zhu Y S, Yang G 2019 Mater. Res. Express 6 17Google Scholar

    [2]

    Bo Z, Guo X Z, Wei X, Yang H C, Yan J H, Cen K F 2019 Physica E 109 156Google Scholar

    [3]

    Borgohain R, Das R, Mondal B, Yordsri V, Thanachayanont C, Baruah S 2018 IEEE Sens. J. 18 7203Google Scholar

    [4]

    赵博硕, 强晓永, 秦岳, 胡明 2018 物理学报 67 058101Google Scholar

    Zhao B S, Qiang X Y, Qin Y, Hu M 2018 Acta Phys. Sin. 67 058101Google Scholar

    [5]

    Zhou P F, Shen Y B, Lu W, Zhao S K, Li T T, Zhong X X, Cui B Y, Wei D Z, Zhang Y H 2020 J. Alloys Compd. 828 154395Google Scholar

    [6]

    Hung N M, Hieu N M, Chinh N D, Hien T T, Quang N D, Majumder S, Choi G, Kim C, Kim D 2020 Sens. Actuators, B 313 128001Google Scholar

    [7]

    Chen K X, Lu H, Li G, Zhang J N, Tian Y H, Gao Y, Guo Q M, Lu H B, Gao J Z 2020 Sens. Actuator, B 308 127716Google Scholar

    [8]

    Nam B, Ko T K, Hyun S K, Lee C 2019 Nano Converg. 6 40Google Scholar

    [9]

    Shen Y B, Zhong X X, Zhang J, Li T T, Zhao S K, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2019 Appl. Surf. Sci. 498 143873Google Scholar

    [10]

    Pawar K K, Shaikh J S, Mali S S, Navale Y H, Patil V B, Hong C K, Patil P S 2019 J. Alloys Compd. 806 726Google Scholar

    [11]

    Yang W, Chen H T, Li C L, Meng H 2020 Mater. Lett. 271 127782Google Scholar

    [12]

    Park B G, Reddeppa M, Kim Y H, Kim S G, Kim M D 2020 Nanotechnology 31 335503Google Scholar

    [13]

    Zhao S K, Shen Y B, Zhou P F, Hao F L, Xu X Y, Gao S L, Wei D Z, Ao Y X, Shen Y S 2020 Sens. Actuator, B 308 127729Google Scholar

    [14]

    Bi H S, Shen Y B, Zhao S K, Zhou P F, Gao S L, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2020 Vacuum 172 109086Google Scholar

    [15]

    Cheng M, Wu Z P, Liu G N, Zhao L J, Gao Y, Li S, Zhang B, Yan X, Lu G Y 2020 Sens. Actuator, B 304 127272Google Scholar

    [16]

    Ri J S, Li X W, Shao C L, Liu Y, Han C H, Li X H, Liu Y C 2020 Sens. Actuator, B 317 128194Google Scholar

    [17]

    Sabry R S, Agool I R, Abbas A M 2019 Silicon 11 2475Google Scholar

    [18]

    Lee O H, Tseng W J 2019 J. Mater. Sci.-Mater. Electron. 30 15145Google Scholar

    [19]

    Inyawilert K, Channei D, Tamaekong N, Liewhiran C, Wisitsoraat A, Tuantranont A, Phanichphant S 2016 J. Nanopart. Res. 18 40Google Scholar

    [20]

    Yoo Y K, Xue Q Z, Lee H C, Cheng S F, Xiang X D, Dionne G F, Xu S F, He J, Chu Y S, Preite S D, Lofland S E, Takeuchi I 2005 Appl. Phys. Lett. 86 042506Google Scholar

    [21]

    Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S 2008 Microporous Mesoporous Mater. 109 84Google Scholar

    [22]

    Cao M H, Wang Y D, Chen T, Antonietti M, Niederberger M 2008 Chem. Mater. 20 5781Google Scholar

    [23]

    Jia X, Fan H 2010 Mater. Res. Bull. 45 1496Google Scholar

    [24]

    Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong V, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S 2011 Sens. Actuator, B 160 580Google Scholar

    [25]

    Bai S L, Zhang K W, Luo R X, Li D Q, Chen A F, Liu C C 2012 J. Mater. Chem. 22 12643Google Scholar

    [26]

    Xiao B X, Zhao Q, Wang D X, Ma G S, Zhang M Z 2017 New J. Chem. 41 8530Google Scholar

    [27]

    Zhao J, Yang T L, Liu Y P, Wang Z Y, Li X W, Sun Y F, Du Y, Li Y C, Lu G Y 2014 Sens. Actuator, B 191 806Google Scholar

    [28]

    Han D M, Zhai L L, Gu F B, Wang Z H 2018 Sens. Actuator, B 262 655Google Scholar

    [29]

    Hu J, Liang Y F, Sun Y J, Zhao Z T, Zhang M, Li P W, Zhang W D, Chen Y, Zhuiykov S 2017 Sens. Actuator, B 252 116Google Scholar

    [30]

    Fahed C, Qadri S B, Kim H, Piqué A, Miller M, Mahadik N A, Rao M V, Osofsky M 2010 Phys. Status Solidi C 7 2298Google Scholar

  • [1] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测. 物理学报, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [2] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [3] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [4] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [5] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [6] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [7] 卞晓鸽, 周胜, 张磊, 何天博, 李劲松. 基于标准样品回归算法和腔增强光谱的NO2检测方法. 物理学报, 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [8] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [9] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘. 高温压电材料、器件与应用. 物理学报, 2018, 67(20): 207701. doi: 10.7498/aps.67.20181091
    [10] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [11] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [12] 孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭. 等离子体辅助平板波导的传输特性及应用研究. 物理学报, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [13] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清. 机载成像差分吸收光谱技术测量区域NO2二维分布研究. 物理学报, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [14] 罗雪雪, 陈家璧, 胡金兵, 梁斌明, 蒋强. 基于双面金属包覆光波导的传感器温度特性研究及实验验证. 物理学报, 2015, 64(23): 234208. doi: 10.7498/aps.64.234208
    [15] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [16] 陈炳章, 易航, 杨金戈, 迟子惠, 荣健, 胡兵, 蒋华北. 光声内窥镜系统在人体直肠癌离体组织中的实验研究. 物理学报, 2014, 63(8): 084204. doi: 10.7498/aps.63.084204
    [17] 朱利, 刘尚合, 郑会志, 魏明, 胡小锋, 索罗金·安德烈. 航空发动机喷流起电机理建模与试验研究. 物理学报, 2013, 62(22): 225201. doi: 10.7498/aps.62.225201
    [18] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验. 物理学报, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [19] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [20] 张贵银, 靳一东. NO2分子的光学-光学双色双共振多光子离化谱. 物理学报, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
计量
  • 文章访问数:  5944
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-21
  • 修回日期:  2020-08-02
  • 上网日期:  2020-12-07
  • 刊出日期:  2020-12-20

/

返回文章
返回