搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双面金属包覆光波导的传感器温度特性研究及实验验证

罗雪雪 陈家璧 胡金兵 梁斌明 蒋强

引用本文:
Citation:

基于双面金属包覆光波导的传感器温度特性研究及实验验证

罗雪雪, 陈家璧, 胡金兵, 梁斌明, 蒋强

Analysis and experimental investigation of the temperature property of sensors based on symmetrical metal-cladding optical waveguide

Luo Xue-Xue, Chen Jia-Bi, Hu Jin-Bing, Liang Bin-Ming, Jiang Qiang
PDF
导出引用
  • 双面金属包覆波导结构(SMCW)是由一层介质波导层被两层金属膜层上下包覆的一种新型波导结构; 本文基于金属层和介质层材料的热-光效应和热膨胀作用, 研究了双面金属包覆波导结构的温度特性. 计算分析的结果表明, 金属膜层的厚度、金属的介电系数、波导层的厚度及其介电常数几乎都与温度变化成比例, 同时, 对双面金属包覆波导结构的波导功能起主要影响的是介质层的厚度值随温度的变化. 本文分别在光谱模式和角度模式下研究双面金属包覆波导结构的反射特性, 并将其应用于基于双面金属包覆波导结构的传感器, 其灵敏度约为21.89 pm/K(光谱模式)和1.449×10-3 rad/K(角度模式). 最后, 本文对角度模式的模拟分析进行了实验验证, 实验验证结果与模拟分析结果基本一致, 实验所用SMCW样品的平均灵敏度约为0.517×10-3 rad/K, 与模拟分析的灵敏度结果同一量级. 双面金属包覆波导结构的传感器对温度非常敏感, 且该结构的物理构造简单, 成本低, 具有非常大的潜在应用价值.
    Symmetrical metal-cladding waveguide (SMCW) is a kind of new waveguide construction, and it consists of a planar glass slab sandwiched in two metal films with different thicknesses. The metal in this structure is usually a noble metal, such as Au, Ag and Cu etc. One of the characteristics of the glass is the sub-millimeter thickness, which is useful for exciting the ultrahigh order mode. Since the SMCW structure was proposed, it has received much attention from the researchers for its excellent characteristics of free-space coupling technique and ultrahigh order mode excitation. This free-space coupling technology has a higher sensitivity compared with the end-face coupling, prism coupling and grating coupling techniques. The ultrahigh order mode is very sensitive to the incident light wavelength, the thickness of guiding layer and the refractive index, but not sensitive to polarization. Based on the thermal-optical effect and thermal expansion effect of metal film and guiding layer materials, we research the temperature property of the SMCW structure. Researching methods include simulation analysis and experimental demonstration. First, we calculate the relation of the thickness and dielectric property of metal films, and the thickness and refractive index of the guiding layer with the temperature. Results show that these four factors are nearly proportional to the temperature difference. Then, we simulate the relationship of the reflectivity of the SMCW structure with those four factors by means of single-factor investigation under spectral and angular interrogation mode of operation, and find that the temperature-dependence of thickness of the guiding layer makes the chief contribution to the waveguide function of SMCW. Meanwhile, we analyze the sensitivity of the sensors based on SMCW structure, and the result shows that the sensitivity of this kind of sensor can be up to 21.89 pm/K (spectral mode) and 1.449×10-3 rad/K (angular mode). Finally, we demonstrate the simulation results by experiment. In our experiment, a series of reflectivity is measured at temperatures varying from 320 to 380 K, and the value is expressed in the form of voltage output of PSD (position sensitive diode). The sensor shows a good linearity and a high average resolution of 0.517×10-3 rad/K; furthermore, we fit the experimental data and get the linear function between angle shifts and temperature difference of Δθ = 0.02965×ΔT. So, once the temperature has any minute variation, it will easily give a change in the resonance incident angle and show the effect of sensor. Owing to the advantages of high sensitivity, low cast and easy fabrication, the temperature sensor based on SMCW will be a promising sensor in many fields.
      通信作者: 陈家璧, jbchenk@163.com
    • 基金项目: 国家自然科学基金(批准号: 11104184, 61308096)、国家重点基础研究发展计划(批准号: 2011CB707504)和青年学者国家科学基金(批准号:61308096).
      Corresponding author: Chen Jia-Bi, jbchenk@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104184, 61308096), the National Basic Research Program of China (Grant No. 2011CB707504), and the National Science Foundation for Young Scholars of China (Grant No.61308096).
    [1]

    Lin Y, Lu F, Tu Y, Ren Z 2007 Nano Lett. 4 191

    [2]

    Bornhop D J, Latham J C, Kussrow A, Markov D A 2007 Science 317 1732

    [3]

    McDonagh C, Burke C S, MacCraith B D 2008 Chemical Reviews 108 400

    [4]

    Huang C J, Dostalek J, Sessitsch A, Knoll W 2011 Analytical Chemistry 83 674

    [5]

    Homola J 1997 Sensors and Actuators B: Chemical 41 207

    [6]

    Guo Q L, Goodman D W 2001 Chin. Phys. B 10 80

    [7]

    Zhi Feng Z, Xiao Ming T 2013 Photonics Technology Letter. 25 310

    [8]

    Li H G, Cao Z Q, Lu H, Shen Q 2003 Appl. Phys. Lett. 83 2757

    [9]

    Lu H, Cao Z, Li H, Shen Q 2004 Appl. Phys. Lett. 85 4579

    [10]

    Feng Y J, Cao Z Q, Chen L, Shen Q S 2006 Acta Phys. Sin. 55 4709 (in Chinese) [冯耀军, 曹庄琪, 陈麟, 沈启舜 2006 物理学报 55 4709]

    [11]

    Chen F, Hao J, Li H G, Cao Z Q 2011 Acta Phys. Sin. 60 074223 (in Chinese) [陈凡, 郝军, 李红根, 曹庄琪 2011 物理学报 60 074223]

    [12]

    Xiao P P 2012 Ph. D. Dissertation(Shanghai: Shanghai Jiao Tong University) (in Chinese) [肖平平 2012 博士学位论文 (上海: 上海交通大学)]

    [13]

    Cao ZH Q, Lu H F, Li H G 2006 Acta. Opt. Sin. 26 497 (in Chinese) [曹庄琪, 陆海峰, 李红根 2006 光学学报 26 497]

    [14]

    Chen L, Zhu Y M, Zhang D W 2009 Chin. Phys. B 18 4875

    [15]

    Chen G, Cao Z, Gu J, Shen Q 2006 Appl. Phys. Lett. 89 081120

    [16]

    Chen F 2005 Opt Express 13 10061

    [17]

    Li H G, Cao Z, Lu H, Shen Q 2006 Chin. Phys. Lett. 23 643

    [18]

    Wang X P, Cheng Y, Sun J J, Li H G, Cao ZH Q 2013 Opt Express 21 13380

    [19]

    Chen L, Zhu Y, Peng Y, Zhuang S 2010 Journal of Optics. 12 075002

    [20]

    Vial A, Grimault A S, Macías D, Barchiesi D, de la Chapelle M L 2005 Phys. Rev. B 71 085416

    [21]

    Sharma A K, Gupta B D 2006 Appl Optics. 45 151

    [22]

    Kai-Qun L 2007 Chin. Phys. Lett. 24 3081

    [23]

    Holzapfel W B, Hartwig M, Sievers W 2001 J. Phys. Chem. Ref. Data 30 515

  • [1]

    Lin Y, Lu F, Tu Y, Ren Z 2007 Nano Lett. 4 191

    [2]

    Bornhop D J, Latham J C, Kussrow A, Markov D A 2007 Science 317 1732

    [3]

    McDonagh C, Burke C S, MacCraith B D 2008 Chemical Reviews 108 400

    [4]

    Huang C J, Dostalek J, Sessitsch A, Knoll W 2011 Analytical Chemistry 83 674

    [5]

    Homola J 1997 Sensors and Actuators B: Chemical 41 207

    [6]

    Guo Q L, Goodman D W 2001 Chin. Phys. B 10 80

    [7]

    Zhi Feng Z, Xiao Ming T 2013 Photonics Technology Letter. 25 310

    [8]

    Li H G, Cao Z Q, Lu H, Shen Q 2003 Appl. Phys. Lett. 83 2757

    [9]

    Lu H, Cao Z, Li H, Shen Q 2004 Appl. Phys. Lett. 85 4579

    [10]

    Feng Y J, Cao Z Q, Chen L, Shen Q S 2006 Acta Phys. Sin. 55 4709 (in Chinese) [冯耀军, 曹庄琪, 陈麟, 沈启舜 2006 物理学报 55 4709]

    [11]

    Chen F, Hao J, Li H G, Cao Z Q 2011 Acta Phys. Sin. 60 074223 (in Chinese) [陈凡, 郝军, 李红根, 曹庄琪 2011 物理学报 60 074223]

    [12]

    Xiao P P 2012 Ph. D. Dissertation(Shanghai: Shanghai Jiao Tong University) (in Chinese) [肖平平 2012 博士学位论文 (上海: 上海交通大学)]

    [13]

    Cao ZH Q, Lu H F, Li H G 2006 Acta. Opt. Sin. 26 497 (in Chinese) [曹庄琪, 陆海峰, 李红根 2006 光学学报 26 497]

    [14]

    Chen L, Zhu Y M, Zhang D W 2009 Chin. Phys. B 18 4875

    [15]

    Chen G, Cao Z, Gu J, Shen Q 2006 Appl. Phys. Lett. 89 081120

    [16]

    Chen F 2005 Opt Express 13 10061

    [17]

    Li H G, Cao Z, Lu H, Shen Q 2006 Chin. Phys. Lett. 23 643

    [18]

    Wang X P, Cheng Y, Sun J J, Li H G, Cao ZH Q 2013 Opt Express 21 13380

    [19]

    Chen L, Zhu Y, Peng Y, Zhuang S 2010 Journal of Optics. 12 075002

    [20]

    Vial A, Grimault A S, Macías D, Barchiesi D, de la Chapelle M L 2005 Phys. Rev. B 71 085416

    [21]

    Sharma A K, Gupta B D 2006 Appl Optics. 45 151

    [22]

    Kai-Qun L 2007 Chin. Phys. Lett. 24 3081

    [23]

    Holzapfel W B, Hartwig M, Sievers W 2001 J. Phys. Chem. Ref. Data 30 515

  • [1] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220226
    [2] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [3] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [4] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [5] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [7] 刘志福, 李培, 程铁栋, 黄文. 铁掺杂多孔氧化铟的NO2传感特性. 物理学报, 2020, 69(24): 248101. doi: 10.7498/aps.69.20200956
    [8] 方龙, 陈国定. 冷液滴/热液池碰撞混合及温度特性. 物理学报, 2019, 68(23): 234702. doi: 10.7498/aps.68.20190809
    [9] 罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福. 光纤放大器放大自发辐射特性与高温易损点位置. 物理学报, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [10] 刘鹏, 廖雷, 褚应波, 王一礴, 胡雄伟, 彭景刚, 李进延, 戴能利. 掺Bi石英光纤的射线辐照和温度影响特性. 物理学报, 2015, 64(22): 224220. doi: 10.7498/aps.64.224220
    [11] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [12] 孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭. 等离子体辅助平板波导的传输特性及应用研究. 物理学报, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [13] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [14] 张瑜洁, 张万荣, 金冬月, 陈亮, 付强, 郭振杰, 邢光辉, 路志义. Ge组分分布对基区杂质非均匀分布的SiGe HBT温度特性的影响. 物理学报, 2013, 62(3): 034401. doi: 10.7498/aps.62.034401
    [15] 朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋. 应用于精密振荡器的石英晶体温度特性研究. 物理学报, 2013, 62(1): 014205. doi: 10.7498/aps.62.014205
    [16] 哈斯乌力吉, 李杏, 郭翔宇, 鲁欢欢, 吕志伟, 林殿阳, 何伟明, 范瑞清. 受激布里渊散射介质——全氟聚醚的温度特性研究. 物理学报, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [17] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [18] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [19] 张 然, 刘 颖, 李 军, 马毅龙, 高升吉, 涂铭旌. 添加Nb在快淬NdFeB永磁体中的作用研究. 物理学报, 2007, 56(1): 518-521. doi: 10.7498/aps.56.518
    [20] 朱明刚, 潘伟, 李卫. Dy与Co对HDDR粘结磁体的温度稳定性与磁性能的影响. 物理学报, 2002, 51(7): 1608-1611. doi: 10.7498/aps.51.1608
计量
  • 文章访问数:  2749
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-02
  • 修回日期:  2015-07-21
  • 刊出日期:  2015-12-05

基于双面金属包覆光波导的传感器温度特性研究及实验验证

  • 1. 上海理工大学, 上海现代光学系统重点实验室, 上海 200093
  • 通信作者: 陈家璧, jbchenk@163.com
    基金项目: 国家自然科学基金(批准号: 11104184, 61308096)、国家重点基础研究发展计划(批准号: 2011CB707504)和青年学者国家科学基金(批准号:61308096).

摘要: 双面金属包覆波导结构(SMCW)是由一层介质波导层被两层金属膜层上下包覆的一种新型波导结构; 本文基于金属层和介质层材料的热-光效应和热膨胀作用, 研究了双面金属包覆波导结构的温度特性. 计算分析的结果表明, 金属膜层的厚度、金属的介电系数、波导层的厚度及其介电常数几乎都与温度变化成比例, 同时, 对双面金属包覆波导结构的波导功能起主要影响的是介质层的厚度值随温度的变化. 本文分别在光谱模式和角度模式下研究双面金属包覆波导结构的反射特性, 并将其应用于基于双面金属包覆波导结构的传感器, 其灵敏度约为21.89 pm/K(光谱模式)和1.449×10-3 rad/K(角度模式). 最后, 本文对角度模式的模拟分析进行了实验验证, 实验验证结果与模拟分析结果基本一致, 实验所用SMCW样品的平均灵敏度约为0.517×10-3 rad/K, 与模拟分析的灵敏度结果同一量级. 双面金属包覆波导结构的传感器对温度非常敏感, 且该结构的物理构造简单, 成本低, 具有非常大的潜在应用价值.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回