搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电纤维复合材料智能传感器的有限元预测与器件性能

高裕昆 赵洁 周晶晶 周静

引用本文:
Citation:

压电纤维复合材料智能传感器的有限元预测与器件性能

高裕昆, 赵洁, 周晶晶, 周静

Finite element prediction and device performance of piezoelectric fiber composite based smart sensor

GAO Yukun, ZHAO Jie, ZHOU Jingjing, ZHOU Jing
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 压电纤维复合材料(macro fiber composite, MFC)具有高压电性、高柔韧性和低损耗等优点, 被广泛应用于航空、航天、民用和军事等领域. 然而, 目前MFC传感器的研究主要聚焦于材料应用, 对于MFC传感器件仿真建模还缺乏系统性的研究. 本工作分别建立了代表性体积元模型、直接模型和混合模型, 从细节到整体、从微观到宏观对MFC的有限元模型进行了建模和分析. 一方面通过等效体积元模型, 掌握MFC内部的电场分布规律, 为力-电耦合提供理论依据; 另一方面通过直接模型和混合模型, 对MFC的实体结构进行整体建模和边界条件的加载, 为MFC贴片式传感和共振式传感的分析提供理论依据, 有效预测了MFC智能元件传感器的传感性能. 仿真结果表明, 共振式传感器性能远优于贴片式传感器, 当激振加速度为5 m/s2、悬臂梁基板长度为80 mm时, 计算得到的MFC共振式传感器的谐振频率为67 Hz, 输出电压为4.17 V. 实验结果表明, MFC传感器测试的谐振频率为74 Hz, 输出电压为3.59 V, 仿真计算结果与MFC传感器预测结果基本符合. 此外, MFC传感器在低频工作时具有优异的传感灵敏度, 传感灵敏度为7.35 V/g. 可见, MFC在低频共振时具有优异的传感特性, 构建的3种有限元模型可以有效预测MFC传感器的传感性能, 为MFC传感器的性能预测提供了保障.
    Macro fiber composite (MFC) is extensively utilized in aviation, aerospace, civilian, and military domains due to its high piezoelectricity, flexibility, and minimal loss. Nevertheless, existing research on MFC sensors has focused on material applications, with a conspicuous lack of systematic investigation into the simulation and modeling of MFC sensor devices. In this study, three models, namely, a representative volume element (RVE) model, a direct model, and a Hybrid model are established to analyze the finite element models of MFC, covering the scales from micro to macro. On the one hand, the equivalent RVE model contributes to an understanding of the internal electric field distribution in MFC, thereby establishing a theoretical foundation for force-electric coupling. On the other hand, the application of the direct model and hybrid model accords with the boundary conditions in MFC applications, which lays a theoretical foundation for the stress sensing and resonance sensing mechanisms of MFC. These models constitute effective tools for predicting the sensing performance of MFC smart element sensors. The simulation outcomes indicate that resonant sensors exhibit significantly superior performance compared with patch sensors. Under the conditions where the excitation acceleration is 5 m/s² and the cantilever substrate length is 80 mm, the simulated resonant frequency of the MFC resonant sensor is 67 Hz, with an output voltage of 4.17 V. Experimental results confirm these findings. It is reported that the resonant frequency is 74 Hz and the output voltage is 3.59 V for the MFC sensor. The remarkable consistency between the simulation results and experimental data of the MFC sensor deserves to be emphasized. In addition, the MFC sensor shows excellent sensing sensitivity at low frequencies, with a sensitivity of 7.35 V/g. Obviously, MFC shows remarkable sensing characteristics at low-frequency resonance. The three finite element models established in this work can well predict the sensing performance of MFC sensors, thus ensuring reliable prediction of the performance of such sensors.
  • 图 1  (a)宏压电纤维复合材料结构; (b)压电纤维复合材料工作模式

    Fig. 1.  (a) Macro fiber composite structure; (b) working mode of macro fiber composite.

    图 2  MFC理论分析建模图

    Fig. 2.  MFC Model diagram of theoretical analysis.

    图 3  MFC的代表性体积元建模 (a) RVE模型; (b) RVE模型的尺寸参数

    Fig. 3.  Representative volume element modeling of MFC: (a) RVE modeling diagram; (b) dimension parameter of RVE.

    图 4  MFC的电场分布图

    Fig. 4.  Electric field distribution of MFC.

    图 5  (a) MFC的直接模型; (b) MFC的混合模型

    Fig. 5.  (a) Direct model of MFC; (b) mixed model of MFC.

    图 6  MFC传感器 (a)贴片式传感器; (b)共振式传感器

    Fig. 6.  MFC sensor: (a) MFC patch sensor; (b) MFC resonance sensor.

    图 7  MFC贴片式传感器传感效果

    Fig. 7.  Sensing performance of MFC patch sensor.

    图 8  MFC共振传感器的传感性能 (a)加速度载荷对输出电压的影响; (b)基板长度对输出电压的影响

    Fig. 8.  Sensing performance of MFC resonant sensor: (a) Influence of acceleration load on output voltage; (b) influence of substrate length on output voltage.

    图 9  MFC共振式传感器的频率和电压变化

    Fig. 9.  Frequency and voltage variation of MFC resonant sensor.

    图 10  PZT-5H基MFC传感器性能 (a)频率响应; (b)加速度响应

    Fig. 10.  Performance of the PZT-5H-based MFC sensor: (a) Frequency response; (b) acceleration response.

    图 11  MFC传感器仿真与实验结果对比

    Fig. 11.  Comparison of simulation and experiment results of MFC sensor.

    表 1  MFC代表性体积元模型尺寸参数

    Table 1.  Dimension parameter of RVE of MFC.

    建模参数纤维宽度纤维高度环氧
    宽度
    环氧
    高度
    电极宽度电极高度电极间距纤维电极间距
    定义符号WfHfWeHeWiHiSiSf
    初始值/mm0.350.450.30.450.10.040.50.04
    下载: 导出CSV

    表 2  压电陶瓷的材料参数

    Table 2.  Material parameters of piezoelectric ceramic.

    密度/(kg·m–3) 压电常数/(10–12C·N–1) 介电常数 柔度矩阵/(10–12m2·N–1)
    ρ d33 d31 d15 $\varepsilon_{11 }$ $\varepsilon_{33} $ s11 s12 s13 s33 s44 s66
    7750 593 –274 741 3130 3400 16.5 –4.8 –8.5 20.7 43.5 42.6
    下载: 导出CSV

    表 3  环氧树脂和叉指电极的材料参数

    Table 3.  Material parameters of epoxy resin and interdigital electrode.

    材料 密度/
    (kg·m–3)
    弹性模量/GPa 泊松比 相对介电
    常数
    铜电极 8960 120 0.34
    环氧树脂 1960 1 0.38 4
    下载: 导出CSV

    表 4  MFC传感器性能参数

    Table 4.  Performance parameters of MFC sensor.

    性能参数单位数值范围
    灵敏度(±5%)V/g0.5—7.35
    工作频段(±5%)Hz1—200
    谐振频率Hz74
    响应时间ms<1
    输出电压V0.5—20
    下载: 导出CSV
  • [1]

    Hagood N W, Bent A A 1993 34th Structures, Structural Dynamics and Materials Conference La Jolla, CA, U. S. A, April 19—22, 1993

    [2]

    Aaron A B, Nesbitt W H 1997 J. Intell. Mater. Syst. Struct. 8 903Google Scholar

    [3]

    Bent A A, Hagood N W, Rodgers J P 1995 J. Intell. Mater. Syst. Struct. 6 338Google Scholar

    [4]

    Wilkie W K, Bryant R G, High J W, Fox R L, Hellbaum R F 2000 Industrial and Commercial Applications of Smart Structures Technologies Newport Beach, USA, March 7-9, 2000

    [5]

    Tu J W, Zhang J R, Li Z, Gao K, Liu M Y 2020 Smart Mater. Struct. 29 015038Google Scholar

    [6]

    Lou J Q, Chen T H, Yang Y L, Xu C, Chen H, Ma J, Cui Y G, Li G 2022 J. Vib. Control 28 290Google Scholar

    [7]

    Lou J Q, Gu T, Chen T H, Yang Y L, Xu C, Wei Y D, Cui Y G 2022 Mech. Syst. Signal Process. 170 108824Google Scholar

    [8]

    Zhou J J, Zhou J, Chen W, Tian J, Shen J, Zhang P C 2022 Compos. Struct. 299 116019Google Scholar

    [9]

    Wang X Y, Yuan X, Wu M L, Gao F, Yan X M, Zhou K C, Zhang D 2019 Sensors 19 1809Google Scholar

    [10]

    Yan M Y, Yuan X, Zhang Y, Zhang S F, Wang X Y, Gao F, Zhou K C, Zhang D 2019 Smart Mater. Struct. 28 125015Google Scholar

    [11]

    Yuan X, Wang X Y, Yan M Y, Gao F, Zhang S F, Zhou K C, Ji X B, Zhang D 2020 Measurement 154 107500Google Scholar

    [12]

    Zhou J J, Zhou J, Yu Y Y, Shen J, Zhang P C, Chen W 2023 Ceram. Intl. 49 32528Google Scholar

    [13]

    Huang R, Zhou J J, Shen J, Tian J, Zhou J, Chen W 2024 Materials 17 3033Google Scholar

    [14]

    Discalea F L, Matt H, Bartoli I, Stefano C, Gyuhae P, Charles F 2006 J. Intell. Mater. Syst. Struct. 18 373

    [15]

    Konka H P, Wahaba M A, Lian K 2013 Sens. Actuators A 194 84Google Scholar

    [16]

    Pearson M R, Eaton M J, Featherston C A, Holford K M, Pullin R 2011 J. Phys. : Conf. Ser. 305 12049Google Scholar

    [17]

    Grzybek D, Micek P 2017 Sens. Actuators A 267 417Google Scholar

    [18]

    Micek P, Grzybek D 2019 Sens. Actuators A 301 111744

    [19]

    El Najjar J, Mustapha S 2020 J. Civ. Struct. Health Monit. 10 793Google Scholar

    [20]

    Glouia Y, Chaabouni Y, El Oudiani A, Maatoug I, Msahli S 2019 Intl. J. Adv. Manuf. Tech. 103 4671Google Scholar

    [21]

    Malekimoghadam R, Icardi U 2019 Composites Part B 177 107405Google Scholar

    [22]

    Marino M, Wriggers P 2019 Comput. Methods Appl. Mech. Eng. 344 938Google Scholar

    [23]

    Yu S, Zhang D T, Qian K 2019 Appl. Composite Mater. 26 65Google Scholar

    [24]

    Zahid M, Sharma R, Bhagat A R, Abbas S, Kumar A, Mahajan P 2019 Composite Struct. 226 111221Google Scholar

  • [1] 程奥迪, 余辉洋, 汪辰涛, 范梓阳, 张佳琪, 吴可滢, 黄见秋. 基于PVDF-EtP纳米纤维膜的压电性能研究及其在压力传感器中的应用. 物理学报, doi: 10.7498/aps.74.20241680
    [2] 段志强, 裴小龙, 郭庆伟, 侯华, 赵宇宏. 多模态混合输入模拟实验过程实现新型Al-Si-Mg系合金设计. 物理学报, doi: 10.7498/aps.72.20221736
    [3] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, doi: 10.7498/aps.71.20220226
    [4] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, doi: 10.7498/aps.71.20211632
    [5] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, doi: 10.7498/aps.71.20211420
    [6] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, doi: 10.7498/aps.70.20201477
    [7] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, doi: 10.7498/aps.70.20210062
    [8] 刘志福, 李培, 程铁栋, 黄文. 铁掺杂多孔氧化铟的NO2传感特性. 物理学报, doi: 10.7498/aps.69.20200956
    [9] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, doi: 10.7498/aps.68.20190642
    [10] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘. 高温压电材料、器件与应用. 物理学报, doi: 10.7498/aps.67.20181091
    [11] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, doi: 10.7498/aps.66.218102
    [12] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用. 物理学报, doi: 10.7498/aps.64.147302
    [13] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, doi: 10.7498/aps.64.120702
    [14] 孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭. 等离子体辅助平板波导的传输特性及应用研究. 物理学报, doi: 10.7498/aps.64.078402
    [15] 罗雪雪, 陈家璧, 胡金兵, 梁斌明, 蒋强. 基于双面金属包覆光波导的传感器温度特性研究及实验验证. 物理学报, doi: 10.7498/aps.64.234208
    [16] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, doi: 10.7498/aps.64.064213
    [17] 陈炳章, 易航, 杨金戈, 迟子惠, 荣健, 胡兵, 蒋华北. 光声内窥镜系统在人体直肠癌离体组织中的实验研究. 物理学报, doi: 10.7498/aps.63.084204
    [18] 朱利, 刘尚合, 郑会志, 魏明, 胡小锋, 索罗金·安德烈. 航空发动机喷流起电机理建模与试验研究. 物理学报, doi: 10.7498/aps.62.225201
    [19] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, doi: 10.7498/aps.59.8535
    [20] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, doi: 10.7498/aps.59.4014
计量
  • 文章访问数:  510
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-30
  • 修回日期:  2024-11-30
  • 上网日期:  2025-01-02

/

返回文章
返回