-
压电纤维复合材料(Macro Fiber Composite,MFC)具有高压电性、高柔韧性和低损耗等优点,被广泛应用于航空、航天、国民和军事等领域。然而,目前MFC传感器的研究主要聚焦于材料应用,对于MFC传感器件仿真建模还缺乏系统性的研究。本工作分别建立了代表性体积元模型、直接模型和混合模型,从细节到整体、从微观到宏观对MFC的有限元模型进行了建模和分析。一方面通过等效体积元模型,掌握MFC内部的电场分布规律,为力-电耦合提供理论依据;另一方面通过直接模型和混合模型,对MFC的实体结构进行整体建模和边界条件的加载,为MFC贴片式传感和共振式传感的分析提供理论依据,有效预测了MFC智能元件传感器的传感性能。仿真结果表明:共振式传感器性能远优于贴片式传感器,当激振加速度5 m/s2,悬臂梁基板长度为80 mm时,计算得到的MFC共振式传感器的谐振频率为67 Hz,输出电压为4.17 V。实验结果表明:MFC传感器测试的谐振频率为74 Hz,输出电压为3.59 V,仿真计算结果与MFC传感器预测结果基本吻合。此外,MFC传感器在低频工作时具有优异的传感灵敏度,传感灵敏度为7.35 V/g。可见,MFC在低频共振时具有优异的传感特性,构建的三种有限元模型可以有效预测MFC传感器的传感性能,为MFC传感器的性能预测提供了保障。
-
关键词:
- 压电纤维复合材料(MFC) /
- 传感器 /
- 性能预测 /
- 有限元模型
Macro Fiber Composite (MFC) is extensively utilized in aviation, aerospace, civilian, and military domains owing to its high piezoelectricity, flexibility, and minimal loss. Nevertheless, contemporary research on MFC sensors has predominantly focused on material applications, with a conspicuous lack of systematic investigation into the simulation and modeling of MFC sensor devices. In this study, three models—namely, a Representative Volume Element (RVE) model, a Direct model, and a Hybrid model—have been introduced to analyze the finite element models of MFC, encompassing scales ranging from microscopic to macroscopic.
On one hand, the equivalent RVE model facilitates an understanding of the internal electric field distribution within MFC, thereby establishing a theoretical foundation for force-electric coupling. On the other hand, the application of the Direct and Hybrid models aligns with the boundary conditions in MFC applications, laying a theoretical groundwork for the stress sensing and resonance sensing mechanisms of MFC. These models constitute effective tools for predicting the sensing performance of MFC smart element sensors. The simulation outcomes indicate that resonant sensors exhibit significantly superior performance compared to patch sensors. Under conditions where the excitation acceleration is 5 m/s² and the cantilever substrate length is 80 mm, the simulated resonant frequency of the MFC resonant sensor is 67 Hz, with an output voltage of 4.17 V. Experimental results corroborate these findings, reporting a resonant frequency of 74 Hz and an output voltage of 3.59 V for the MFC sensor. The notable consistency between the simulation and experimental results for the MFC sensor is worth highlighting. Furthermore, the MFC sensor demonstrates exceptional sensing sensitivity at low frequencies, with a sensitivity of 7.35 V/g. It is evident that MFC exhibits remarkable sensing characteristics at low-frequency resonance, and the three finite element models developed in this research are proficient in predicting the sensing performance of MFC sensors, thereby ensuring reliable performance prediction for such sensors.-
Keywords:
- Macro fiber composites(MFC) /
- Sensors /
- Performance prediction /
- Finite Element Model
-
[1] Hagood N W, Bent A A 1993 34th Structures, Structural Dynamics and Materials Conference (La Jolla)
[2] Aaron A B, Nesbitt W H 1997 J. Intell. Mater. Syst. Struct. 8 903
[3] Bent A A, Hagood N W, Rodgers J P 1995 J. Intell. Mater. Syst. Struct. 6 338
[4] Wilkie W K, Bryant R G, High J W, Fox R L, Hellbaum R F 2000 Industrial and Commercial Applications of Smart Structures Technologies (Newport Beach)
[5] Tu J, Zhang J, Li Z,Gao K, Liu M Y 2020 Smart Mater. Struct. 29 015038
[6] Lou J, Chen T, Yang Y, Xu C, Chen H, Ma J, Cui Y, Li G 2022 J. Vib. Control 28 290
[7] Lou J, Gu T, Chen T, Yang Y, Xu C, Wei Y, Cui Y 2022 Mech. Syst. Signal Process. 170 108824
[8] Zhou J J, Zhou J, Chen W, Tian J, Shen J, Zhang P C 2022 Composite Struct. 299 116019
[9] Wang X, Yuan X, Wu M, Gao F, Yan X, Zhou K, Zhang D 2019 Sensors 19 1809
[10] Yan M Y, Yuan X, Zhang Y, Zhang S F, Wang X Y, Gao F, Zhou K C, Zhang D 2019 Smart Mater. Struct. 28 125015
[11] Yuan X, Wang X Y, Yan M Y, Gao F, Zhang S F, Zhou K C, Ji X B, Zhang D 2020 Measurement 154 107500
[12] Zhou J J, Zhou J, Yu Y Y, Shen J, Zhang P C, Chen W 2023 Ceram. Intl. 49 32528
[13] Huang R, Zhou J J, Shen J, Tian J, Zhou J, Chen W 2024 Materials 17 3033
[14] Discalea F L, Matt H, Bartoli I, Stefano C, Gyuhae P, Charles F 2006 J. Intell. Mater. Syst. Struct. 18 373
[15] Konka H P, Wahaba M A, Lian K 2013 Sens. Actuators A 194 84
[16] Pearson M R, Eaton M J, Featherston C A, Holford K M, Pullin R 2011 J. Phys.: Conf. Ser. 305 12049
[17] Grzybek D, Micek P 2017 Sens. Actuators A 267 417
[18] Micek P, Grzybek D 2019 Sens. Actuators A 301 111744
[19] El Najjar J, Mustapha S 2020 J. Civ. Struct. Health Monit. 10 793
[20] Glouia Y, Chaabouni Y, El Oudiani A, Maatoug I, Msahli S 2019 Intl. J. Adv. Manuf. Tech. 103 4671
[21] Malekimoghadam R, Icardi U 2019 Composites Part B 177 107405
[22] Marino M, Wriggers P 2019 Comput. Methods Appl. Mech. Eng. 344 938
[23] Yu S, Zhang D T, Qian K 2019 Appl. Composite Mater. 26 65
[24] Zahid M, Sharma R, Bhagat A R, Abbas S, Kumar A, Mahajan P 2019 Composite Struct. 226 111221
计量
- 文章访问数: 79
- PDF下载量: 3
- 被引次数: 0