搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基底石墨烯器件的现状及发展趋势

武佩 胡潇 张健 孙连峰

引用本文:
Citation:

硅基底石墨烯器件的现状及发展趋势

武佩, 胡潇, 张健, 孙连峰

Research status and development graphene devices using silicon as the subtrate

Wu Pei, Hu Xiao, Zhang Jian, Sun Lian-Feng
PDF
导出引用
  • 石墨烯是一种由单层碳原子紧密排列而形成的具有蜂窝状结构的二维晶体材料,特殊的结构赋予了其优异的性能,如高载流子迁移率、电导率、热导率、力学强度以及量子反常霍尔效应.由于石墨烯优异的特性,迅速激起了人们对石墨烯研究以及应用的热情.石墨烯沉积或转移到硅片后,其器件构建与集成和传统硅基半导体工艺兼容.基于石墨烯的硅基器件与硅基器件的有机结合,可以大幅度提高半导体器件的综合性能.随着石墨烯制备工艺和转移技术的优化,硅基底石墨烯器件将呈现出潜在的、巨大的实际应用价值. 随着器件尺寸的纳米化,器件的发热、能耗等问题成为硅基器件与集成发展面临的瓶颈问题,石墨烯的出现为解决这些问题提供了一种可能的解决方案.本文综述了石墨烯作为场效应晶体管研究的进展,为解决石墨烯带隙为零、影响器件开关比的问题,采用了量子限域法、化学掺杂法、外加电场调节法和引入应力法.在光电器件研究方面,石墨烯可以均匀吸收所有频率的光,其光电性能也受到了广泛的关注,如光电探测器、光电调制器、太阳能电池等.同时,石墨烯作为典型的二维材料,其优越的电学性能以及超高的比表面积,使其作为高灵敏度传感器的研究成为纳米科学研究的前沿和热点领域.
    Graphene, a two-dimensional sheet of sp2-hybridized carbon material, possesses excellent properties, such as high carrier mobility, high electrical conductivity, high thermal conductivity, strong mechanical strength and quantum anomalous Hall effect. So graphene quickly lights the enthusiasm for its research and application due to its superior performance. The silicon-based graphene devices are compatible with traditional silicon-based semiconductor technology. The combination of silicon-based graphene devices and silicon-based devices can greatly improve the overall performances of semiconductor devices. With the optimization of graphene preparation process and transfer technology, graphene devices using silicon as the substrate will show promising potential applications. With the scaling of device, the heat dissipation, power consumption and other issues impede the integration of silicon-based devices. Graphene provides a possible solution to these problems. In this paper, we summarize the graphene application in field effect transistor. The bandgap of graphene is zero, which will have adverse effect on the switching ratio of the device. In order to solve this problem, a variety of methods are used to open its bandgap, such as the quantum confinement method, the chemical doping method, the electric field regulation method, and the introduction stress method. In the field of optoelectronic devices, graphene can evenly absorb light at all frequencies, and its photoelectric properties have also been widespread concerned, such as photoelectric detector, photoelectric modulator, solar cell, etc. At the same time, graphene, as a typical two-dimensional material, possesses superior electrical properties and ultra-high specific surface area, and becomes the hottest material in high sensitivity sensors.
      通信作者: 孙连峰, slf@nanoctr.cn
    • 基金项目: 国家重点研发计划纳米科技重点专项(批准号:2016YFA0200403)和国家自然科学基金(批准号:51472057)资助的课题.
      Corresponding author: Sun Lian-Feng, slf@nanoctr.cn
    • Funds: Project supported by the Major Nanoprojects of Ministry of Science and Technology of China (Grant No. 2016YFA0200403) and the National Natural Science Foundation of China (Grant No. 51472057).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178

    [3]

    Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H 2011 Small 7 1876

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fundenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [6]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Hwang E H, Adam S, Das Sarma S 2007 Phys. Rev. Lett. 98 186806

    [10]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [11]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206

    [12]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov S, Booth T J, Roth S 2007 Nature 446 60

    [13]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [14]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [15]

    Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [16]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Physica E 40 228

    [17]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [18]

    Ohta T, Bostwick A, SeyⅡer T, Horn K, Rotenberg E 2006 Science 313 951

    [19]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2008 Phys. Rev. B 78 045405

    [20]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen R, Wang F 2009 Nature 459 820

    [21]

    Evaldsson M, Zozoulenko I V, Xu H, Heinzel T 2008 Phys. Rev. B 78 161407

    [22]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [23]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M. Shen Y R 2008 Science 320 206

    [24]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stomer H L, Basov D N 2008 Nat. Phys. 4 532

    [25]

    Xia F, Mueller T, Golizadeh-Mojarad R 2009 Nano Lett. 9 1039

    [26]

    Gokus T, Nair R R, Bonetti A, Bohmler M, Ferrari A L, Hartschuh 2009 ACS Nano 3 3963

    [27]

    Luo Z, Vora P M, Mele E J, Johnson C, Kikkawa J M 2009 Appl. Phys. Lett. 94 111909

    [28]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [29]

    Pop E, Mann D, Wang Q, Goodson K, Dai H J 2006 Nano Lett. 6 96

    [30]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [31]

    Lemme M C, Echtemeyer T J, Baus M, Kurtz H 2007 IEEE Electron Dev. Lett. 28 282

    [32]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [33]

    Zhang J X, Wang L, Quhe R, Liu Q, Li H, Yu D, Mei W N, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [34]

    Yu J, Liu G, Sumant A V, Balandin A A 2012 Nano Lett. 12 1603

    [35]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Goergiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947

    [36]

    Moon J S, Seo H C, Stratan F, Antcliffe M, Schmitz A, Ross R S, Kiselev A A, Wheeler V D, Nyakiti L O, Gaskill D K, Lee K M, Asbeck P M 2013 IEEE Electron Dev. Lett. 34 1190

    [37]

    Khasanvis S, Habib K M M, Rahman M, Narayanan P, Lake R K, Moritz C A 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NanoArch) Amsterdam, the Netherlands July 4-6, 2012 p69

    [38]

    Johari Z, Hamid F K, Tan M L P, Ahmadi M T, Harun F K, Ismail R 2013 J. Comput. Theor. Nanos. 10 1164

    [39]

    Wessely P J, Wessely Y F, Birinci E, Beckmann K, Riedinger B, Schwalke U 2012 Physica E 44 1132

    [40]

    Wessely P J, Schwalke U 2013 8th International Conference on Design and Technology of Integrated Systems in Nanoscale Era (IEEE DTIS) New York, USA, March 26-28, 2013 p12

    [41]

    Wessely P J, Schwalke U 2014 9th IEEE International Conference on Design and Technology of Integrated Systems In Nanoscale Era (DTIS) Santorini May 6-8, 2014 p1

    [42]

    Sordan R, Ferrari A C 2013 IEEE International Electron Devices Meeting (IEDM) Washington USA, December 9-11, 2013 p1

    [43]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [44]

    Guo X, Wu X D, Xu Y, Yu B, Wu K 2014 IEEE MTT-S International Microwave Symposium (IMS) Tampa USA, June 1-6, 2014 p1

    [45]

    Chen P Y, Alu A 2013 7th Europe Conference on Antennas and Propagation (EuCAP) Gothenburg Sweden April 8-12, 2013 p697

    [46]

    Li X M, Zhu H W, Wang K L, Cao A Y, Wei J Q, Li C Y, Jia Y, Li Z, Li X, Wu D H 2010 Adv. Mater. 22 2743

    [47]

    Fan G F, Zhu H W, Wang K L, Wei J Q, Li X M, Shu Q K, Guo N, Wu D H 2011 ACS Appl. Mater. Inter. 3 721

    [48]

    Feng T T, Xie D, Lin Y X, Zhao H M, Chen Y, Tian H, Ren T L, Li X, Li Z, Wang K L, Wu D H, Zhu H W 2012 Nanoscale 4 2130

    [49]

    Miao X, Tongay S, Petterson M K, Berke K, Rinzler A G, Appletion B R, Hebard A F 2012 Nano Lett. 12 2745

    [50]

    Cui T X, L R T, Huang Z H, Chen S X, Zhang Z X, Gan X, Jia Y, Li X M, Wang K L, Wu D H, Kang F Y 2013 J. Mater. Chem. A 1 5736

    [51]

    Shi E Z, Li H B, Yang L, Zhang L H, Li Z, Li P X, Shang Y Y, Wu S T, Li X M, Wei J Q, Wang K L, Zhu H W, Wu D H, Fang Y, Cao A Y 2013 Nano Lett. 13 1776

    [52]

    Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J 2008 Adv. Funct. Mater. 18 1518

    [53]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [54]

    An X, Liu F, Jung Y J, Kar S 2013 Nano Lett. 13 909

    [55]

    L P, Zhang X J, Zhang X W, Deng W, Jie J S 2013 IEEE Electron Device Lett. 34 1337

    [56]

    Zhu M, Li X M, Guo Y B, Li X, Sun P Z, Zang X B, Wang K L, Zhong M L, Wu D H, Zhu H W 2014 Nanoscale 6 4909

    [57]

    Li X M, Zhu M, Du M D, L Z, Zhang L, Li Y C, Yang T T, Li X, Wang K L, Zhu H W, Fang Y 2016 Small 12 595

    [58]

    Kim J, Joo S S, Lee K W, Kim J H, Shin D H, Choi S H 2014 ACS Appl. Mater. Inter. 6 20880

    [59]

    Zhu M, Zhang L, Li X M, He Y J, Li X, Guo F M, Zang X B, Wang K L, Xie D, Li X H, Wei B Q, Zhu H W 2015 J. Mater. Chem. A 3 8133

    [60]

    Liu M, Yin X B, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [61]

    Koester S J, Li M 2012 Appl. Phys. Lett. 100 171107

    [62]

    Liu M, Yin X B, Zhang X 2012 Nano Lett. 12 1482

    [63]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [64]

    Mohsin M, Schall D, Otto M, Noculak A, Neumaier D, Kurz H 2014 Opt. Express 22 15292

    [65]

    Ye S, Wang Z, Tang L, Zhang Y, Lu R, Liu Y 2014 Opt. Express 22 26173

    [66]

    Midrio M, Boscolo S, Moresco M 2012 Opt. Express 20 23144

    [67]

    Xu C, Jin Y C, Yang L Z, Yang J Y, Jiang X Q 2012 Opt. Express 20 22398

    [68]

    Du W, Li E P, Hao R 2014 IEEE Photon. Tech. L. 26 2008

    [69]

    Huang B H, Lu W B, Li X B, Wang J, Liu Z 2016 Appl. Opt. 55 5598

    [70]

    Hao R, Du W, Li E P 2013 Appl. Phys. Lett. 103 061116

    [71]

    Hu Y T, Pantouvaki M, Brems S, Asselberghs I, Huyghebaert C, Geisler M, Alessandri C, Baers R, Absil P, van Thourhout D 2014 60th Annual IEEE International Electron Devices Meeting (IEDM) San Francisco USA, December 15-17, 2014 p561

    [72]

    Hu Y T, Pantouvaki M, Campenhout J V, Brems S, Asselberghs I, Huyghebaert C, Absil P, van Thourhout D 2016 Laser Photon. Rev. 10 307

    [73]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [74]

    Shin H J, Choi W M, Choi D, Han G H, Yoon S M, Park H K, Kim S W, Jin Y W, Lee S Y, Kim J M, Choi J Y, Lee Y H 2010 J. Am. Chem. Soc. 132 15603

    [75]

    Choi D, Choi M Y, Choi W M, Shin H J, Park H K, Seo J S, Park J, Yoon S M, Chae S J, Lee Y H, Kim S W, Choi J Y, Lee S Y, Kim J M 2010 Adv. Mater. 22 2187

    [76]

    Huang W, Wang G L, Gao F Q, Qiao Z T, Wang G, Tao L, Chen M J, Yu F, Yang H C, Sun L F 2014 Nanoscale 6 3921

    [77]

    Huang W B, Zhao Y, Wang G L, Qiao Z, Gao F Q, Wang X W, Wang G, Deng Y, Fan X K, Zhang J, Duan R F, Qiu X H, Sun L F 2015 RSC Adv. 5 34065

    [78]

    Wang G 2015 Ph. D. Dissertation (Beijing: National Center for Nonoscience and Technology) (in Chinese) [王钢 2015 博士学位论文(北京: 国家纳米科学中心)]

    [79]

    Zou Y, Li F, Zhu Z H, Zhao M W, Xu X G, Su X Y 2011 Eur. Phys. J. B 81 475

    [80]

    Yavari F, Chen Z, Thomas A V, Ren W, Cheng H M, Koratkar N 2011 Sci. Rep. 1 166

    [81]

    Cheng Z, Li Q, Li Z, Zhou Q, Fang Y 2010 Nano Lett. 10 1864

    [82]

    Zhang T, Cheng Z, Wang Y, Li Z, Wang C, Li Y, Fang Y 2010 Nano Lett. 10 4738

    [83]

    Sudibya H G, He Q, Zhang H, Chen P 2011 ACS Nano 5 1990

    [84]

    Li X, Shi J J, Pang J C, Liu W H, Liu H Z, Wang X L 2014 J. Nanomater. 2014 547139

    [85]

    Dong X C, Shi Y M, Huang W, Chen P, Li L J 2010 Adv. Mater. 22 1649

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178

    [3]

    Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H 2011 Small 7 1876

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fundenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [6]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Hwang E H, Adam S, Das Sarma S 2007 Phys. Rev. Lett. 98 186806

    [10]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [11]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206

    [12]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov S, Booth T J, Roth S 2007 Nature 446 60

    [13]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [14]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [15]

    Han M Y, Ozyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [16]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Physica E 40 228

    [17]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [18]

    Ohta T, Bostwick A, SeyⅡer T, Horn K, Rotenberg E 2006 Science 313 951

    [19]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2008 Phys. Rev. B 78 045405

    [20]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen R, Wang F 2009 Nature 459 820

    [21]

    Evaldsson M, Zozoulenko I V, Xu H, Heinzel T 2008 Phys. Rev. B 78 161407

    [22]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [23]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M. Shen Y R 2008 Science 320 206

    [24]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stomer H L, Basov D N 2008 Nat. Phys. 4 532

    [25]

    Xia F, Mueller T, Golizadeh-Mojarad R 2009 Nano Lett. 9 1039

    [26]

    Gokus T, Nair R R, Bonetti A, Bohmler M, Ferrari A L, Hartschuh 2009 ACS Nano 3 3963

    [27]

    Luo Z, Vora P M, Mele E J, Johnson C, Kikkawa J M 2009 Appl. Phys. Lett. 94 111909

    [28]

    Kim P, Shi L, Majumdar A, McEuen P L 2001 Phys. Rev. Lett. 87 215502

    [29]

    Pop E, Mann D, Wang Q, Goodson K, Dai H J 2006 Nano Lett. 6 96

    [30]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [31]

    Lemme M C, Echtemeyer T J, Baus M, Kurtz H 2007 IEEE Electron Dev. Lett. 28 282

    [32]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [33]

    Zhang J X, Wang L, Quhe R, Liu Q, Li H, Yu D, Mei W N, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [34]

    Yu J, Liu G, Sumant A V, Balandin A A 2012 Nano Lett. 12 1603

    [35]

    Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Goergiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, Ponomarenko L A 2012 Science 335 947

    [36]

    Moon J S, Seo H C, Stratan F, Antcliffe M, Schmitz A, Ross R S, Kiselev A A, Wheeler V D, Nyakiti L O, Gaskill D K, Lee K M, Asbeck P M 2013 IEEE Electron Dev. Lett. 34 1190

    [37]

    Khasanvis S, Habib K M M, Rahman M, Narayanan P, Lake R K, Moritz C A 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NanoArch) Amsterdam, the Netherlands July 4-6, 2012 p69

    [38]

    Johari Z, Hamid F K, Tan M L P, Ahmadi M T, Harun F K, Ismail R 2013 J. Comput. Theor. Nanos. 10 1164

    [39]

    Wessely P J, Wessely Y F, Birinci E, Beckmann K, Riedinger B, Schwalke U 2012 Physica E 44 1132

    [40]

    Wessely P J, Schwalke U 2013 8th International Conference on Design and Technology of Integrated Systems in Nanoscale Era (IEEE DTIS) New York, USA, March 26-28, 2013 p12

    [41]

    Wessely P J, Schwalke U 2014 9th IEEE International Conference on Design and Technology of Integrated Systems In Nanoscale Era (DTIS) Santorini May 6-8, 2014 p1

    [42]

    Sordan R, Ferrari A C 2013 IEEE International Electron Devices Meeting (IEDM) Washington USA, December 9-11, 2013 p1

    [43]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [44]

    Guo X, Wu X D, Xu Y, Yu B, Wu K 2014 IEEE MTT-S International Microwave Symposium (IMS) Tampa USA, June 1-6, 2014 p1

    [45]

    Chen P Y, Alu A 2013 7th Europe Conference on Antennas and Propagation (EuCAP) Gothenburg Sweden April 8-12, 2013 p697

    [46]

    Li X M, Zhu H W, Wang K L, Cao A Y, Wei J Q, Li C Y, Jia Y, Li Z, Li X, Wu D H 2010 Adv. Mater. 22 2743

    [47]

    Fan G F, Zhu H W, Wang K L, Wei J Q, Li X M, Shu Q K, Guo N, Wu D H 2011 ACS Appl. Mater. Inter. 3 721

    [48]

    Feng T T, Xie D, Lin Y X, Zhao H M, Chen Y, Tian H, Ren T L, Li X, Li Z, Wang K L, Wu D H, Zhu H W 2012 Nanoscale 4 2130

    [49]

    Miao X, Tongay S, Petterson M K, Berke K, Rinzler A G, Appletion B R, Hebard A F 2012 Nano Lett. 12 2745

    [50]

    Cui T X, L R T, Huang Z H, Chen S X, Zhang Z X, Gan X, Jia Y, Li X M, Wang K L, Wu D H, Kang F Y 2013 J. Mater. Chem. A 1 5736

    [51]

    Shi E Z, Li H B, Yang L, Zhang L H, Li Z, Li P X, Shang Y Y, Wu S T, Li X M, Wei J Q, Wang K L, Zhu H W, Wu D H, Fang Y, Cao A Y 2013 Nano Lett. 13 1776

    [52]

    Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J 2008 Adv. Funct. Mater. 18 1518

    [53]

    Mueller T, Xia F, Avouris P 2010 Nat. Photon. 4 297

    [54]

    An X, Liu F, Jung Y J, Kar S 2013 Nano Lett. 13 909

    [55]

    L P, Zhang X J, Zhang X W, Deng W, Jie J S 2013 IEEE Electron Device Lett. 34 1337

    [56]

    Zhu M, Li X M, Guo Y B, Li X, Sun P Z, Zang X B, Wang K L, Zhong M L, Wu D H, Zhu H W 2014 Nanoscale 6 4909

    [57]

    Li X M, Zhu M, Du M D, L Z, Zhang L, Li Y C, Yang T T, Li X, Wang K L, Zhu H W, Fang Y 2016 Small 12 595

    [58]

    Kim J, Joo S S, Lee K W, Kim J H, Shin D H, Choi S H 2014 ACS Appl. Mater. Inter. 6 20880

    [59]

    Zhu M, Zhang L, Li X M, He Y J, Li X, Guo F M, Zang X B, Wang K L, Xie D, Li X H, Wei B Q, Zhu H W 2015 J. Mater. Chem. A 3 8133

    [60]

    Liu M, Yin X B, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [61]

    Koester S J, Li M 2012 Appl. Phys. Lett. 100 171107

    [62]

    Liu M, Yin X B, Zhang X 2012 Nano Lett. 12 1482

    [63]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [64]

    Mohsin M, Schall D, Otto M, Noculak A, Neumaier D, Kurz H 2014 Opt. Express 22 15292

    [65]

    Ye S, Wang Z, Tang L, Zhang Y, Lu R, Liu Y 2014 Opt. Express 22 26173

    [66]

    Midrio M, Boscolo S, Moresco M 2012 Opt. Express 20 23144

    [67]

    Xu C, Jin Y C, Yang L Z, Yang J Y, Jiang X Q 2012 Opt. Express 20 22398

    [68]

    Du W, Li E P, Hao R 2014 IEEE Photon. Tech. L. 26 2008

    [69]

    Huang B H, Lu W B, Li X B, Wang J, Liu Z 2016 Appl. Opt. 55 5598

    [70]

    Hao R, Du W, Li E P 2013 Appl. Phys. Lett. 103 061116

    [71]

    Hu Y T, Pantouvaki M, Brems S, Asselberghs I, Huyghebaert C, Geisler M, Alessandri C, Baers R, Absil P, van Thourhout D 2014 60th Annual IEEE International Electron Devices Meeting (IEDM) San Francisco USA, December 15-17, 2014 p561

    [72]

    Hu Y T, Pantouvaki M, Campenhout J V, Brems S, Asselberghs I, Huyghebaert C, Absil P, van Thourhout D 2016 Laser Photon. Rev. 10 307

    [73]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [74]

    Shin H J, Choi W M, Choi D, Han G H, Yoon S M, Park H K, Kim S W, Jin Y W, Lee S Y, Kim J M, Choi J Y, Lee Y H 2010 J. Am. Chem. Soc. 132 15603

    [75]

    Choi D, Choi M Y, Choi W M, Shin H J, Park H K, Seo J S, Park J, Yoon S M, Chae S J, Lee Y H, Kim S W, Choi J Y, Lee S Y, Kim J M 2010 Adv. Mater. 22 2187

    [76]

    Huang W, Wang G L, Gao F Q, Qiao Z T, Wang G, Tao L, Chen M J, Yu F, Yang H C, Sun L F 2014 Nanoscale 6 3921

    [77]

    Huang W B, Zhao Y, Wang G L, Qiao Z, Gao F Q, Wang X W, Wang G, Deng Y, Fan X K, Zhang J, Duan R F, Qiu X H, Sun L F 2015 RSC Adv. 5 34065

    [78]

    Wang G 2015 Ph. D. Dissertation (Beijing: National Center for Nonoscience and Technology) (in Chinese) [王钢 2015 博士学位论文(北京: 国家纳米科学中心)]

    [79]

    Zou Y, Li F, Zhu Z H, Zhao M W, Xu X G, Su X Y 2011 Eur. Phys. J. B 81 475

    [80]

    Yavari F, Chen Z, Thomas A V, Ren W, Cheng H M, Koratkar N 2011 Sci. Rep. 1 166

    [81]

    Cheng Z, Li Q, Li Z, Zhou Q, Fang Y 2010 Nano Lett. 10 1864

    [82]

    Zhang T, Cheng Z, Wang Y, Li Z, Wang C, Li Y, Fang Y 2010 Nano Lett. 10 4738

    [83]

    Sudibya H G, He Q, Zhang H, Chen P 2011 ACS Nano 5 1990

    [84]

    Li X, Shi J J, Pang J C, Liu W H, Liu H Z, Wang X L 2014 J. Nanomater. 2014 547139

    [85]

    Dong X C, Shi Y M, Huang W, Chen P, Li L J 2010 Adv. Mater. 22 1649

  • [1] 万震, 李成, 刘宇健, 宋学锋, 樊尚春. 石墨烯谐振式力学量传感器研究进展. 物理学报, 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性. 物理学报, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [5] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [6] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [7] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [8] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [9] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [10] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性. 物理学报, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [11] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [12] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [13] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [14] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [15] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [16] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [17] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [18] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [19] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性. 物理学报, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [20] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
计量
  • 文章访问数:  8095
  • PDF下载量:  896
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-04
  • 修回日期:  2017-09-06
  • 刊出日期:  2017-11-05

/

返回文章
返回