搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维原子晶体的低电压扫描透射电子显微学研究

黎栋栋 周武

引用本文:
Citation:

二维原子晶体的低电压扫描透射电子显微学研究

黎栋栋, 周武

Low voltage scanning transmission electron microscopy for two-dimensional materials

Li Dong-Dong, Zhou Wu
PDF
导出引用
  • 二维原子晶体材料,如石墨烯和过渡金属硫族化合物等,具有不同于其块体的独特性能,有望在二维半导体器件中得到广泛应用.晶体中的结构缺陷对材料的物理化学性能有直接的影响,因此研究结构缺陷和局域物性之间的关联是当前二维原子晶体研究中的重要内容,需要高空间分辨率的结构研究手段.由于绝大部分二维原子晶体在高能量高剂量的电子束辐照下容易发生结构损伤,利用电子显微方法对二维原子晶体缺陷的研究面临诸多挑战.低电压球差校正扫描透射电子显微(STEM)技术的发展,一个主要目标就是希望在不损伤结构的前提下对二维原子晶体的本征结构缺陷进行研究.在STEM下,多种不同的信号能够被同步采集,包括原子序数衬度高分辨像和电子能量损失谱等,是表征二维原子晶体缺陷的有力工具,不但能对材料的本征结构进行单原子尺度的成像和能谱分析,还能记录材料结构的动态变化.通过调节电子束加速电压和电子辐照剂量,扫描透射电子显微镜也可以作为电子刻蚀二维原子晶体材料的平台,用于加工新型纳米结构以及探索新型二维原子晶体的原位制备.本综述主要以本课题组在石墨烯和二维过渡金属硫族化合物体系的研究为例,介绍低电压扫描透射电子显微学在二维原子晶体材料研究中的实际应用.
    Two-dimensional (2D) materials, such as graphene and transition-metal dichalcogenide monolayers, have unique properties that are distinctly different from those of their bulk counterparts, and hopefully possess a wide range of applications in 2D semiconductor device. Structural defects are known to have profound influences on the properties of crystalline materials; thus, correlating the defect structure with local properties in 2D material is of fundamental importance. However, electron microscopy studies of 2D materials on an atomic scale have become a challenge as most of these materials are susceptible to electron beam irradiation damage under high voltage and high dose experimental conditions. The development of low voltage aberration-corrected scanning transmission electron microscopy (STEM) has made it possible to study 2D materials at a single atom level without damaging their intrinsic structures. In addition, controllable structural modification by using electron beam becomes feasible by controlling the electron beam-sample interaction. New nanostructures can be created and novel 2D materials can be fabricated in-situ by using this approach. In this article, we review some of our recent studies of graphene and transition-metal dichalcogenides to showcase the applications of low voltage aberration corrected STEM in 2D material research.
      通信作者: 周武, wuzhou@ucas.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51622211)和中国科学院率先行动百人计划资助的课题.
      Corresponding author: Zhou Wu, wuzhou@ucas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51622211) and the CAS Pioneer Hundred Talents Program.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    As thin as it gets 2017 Nat. Mater. 16 155

    [3]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509

    [4]

    Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S, Oxley M P, Pantelides S T, Pennycook S J 2010 Nature 464 571

    [5]

    Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, Kaiser U 2012 Phys. Rev. Lett. 108 196102

    [6]

    Suenaga K, Iizumi Y, Okazaki T 2011 Europ. Phys. J. Appl. Phys. 54 33508

    [7]

    Krivanek O L, Zhou W, Chisholm M F, Idrobo J C, Lovejoy T C, Ramasse Q M, Dellby N 2012 Gentle STEM of Single Atoms: Low keV Imaging and Analysis at Ultimate Detection Limits (West Sussex: John Wiley Sons, Ltd.) p119

    [8]

    Krivanek O L, Lovejoy T C, Dellby N, Carpenter R W 2013 Microscopy 62 3

    [9]

    Zhou W, Oxley M P, Lupini A R, Krivanek O L, Pennycook S J, Idrobo J C 2012 Microsc. Microanal. 18 1342

    [10]

    Krivanek O L, Lovejoy T C, Dellby N, Aoki T, Carpenter R W, Rez P, Soignard E, Zhu J, Batson P E, Lagos M J, Egerton R F, Crozier P A 2014 Nature 514 209

    [11]

    Jones L, Yang H, Pennycook T J, Marshall M S J, Aert S V, Browning N D, Castell M R, Nellist P D 2015 Advanced Structural and Chemical Imaging 1 8

    [12]

    Sang X, LeBeau J M 2014 Ultramicroscopy 138 28

    [13]

    Urban K W 2008 Science 321 506

    [14]

    Urban K W 2009 Nat. Mater. 8 260

    [15]

    Yankovich A B, Berkels B, Dahmen W, Binev P, Sanchez S I, Bradley S A, Li A, Szlufarska I, Voyles P M 2014 Nat. Commun. 5 4155

    [16]

    Gong Y, Liu Z, Lupini A R, Shi G, Lin J, Najmaei S, Lin Z, Elas A L, Berkdemir A, You G, Terrones H, Terrones M, Vajtai R, Pantelides S T, Pennycook S J, Lou J, Zhou W, Ajayan P M 2014 Nano Lett. 14 442

    [17]

    Zhou W, Pennycook S J, Idrobo J C 2012 Ultramicroscopy 119 51

    [18]

    Kapetanakis M D, Zhou W, Oxley M P, Lee J, Prange M P, Pennycook S J, Idrobo J C, Pantelides S T 2015 Phys. Rev. B 92 125147

    [19]

    Zhou W, Kapetanakis M D, Prange M P, Pantelides S T, Pennycook S J, Idrobo J C 2012 Phys. Rev. Lett. 109 206803

    [20]

    Zhou W, Lee J, Nanda J, Pantelides S T, Pennycook S J, Idrobo J C 2012 Nat. Nanotechnol. 7 161

    [21]

    Lin J, Fang W, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J, Pantelides S T 2013 Nano Lett. 13 3262

    [22]

    Brown L, Hovden R, Huang P, Wojcik M, Muller D A, Park J 2012 Nano Lett. 12 1609

    [23]

    Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135

    [24]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615

    [25]

    Hong J, Hu Z, Probert M, Li K, L D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J, Zhang Z 2015 Nat. Commun. 6 6293

    [26]

    Zou X, Liu Y, Yakobson B I 2013 Nano Lett. 13 253

    [27]

    Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754

    [28]

    Lee J, Zhou W, Pennycook S J, Idrobo J C, Pantelides S T 2013 Nat. Commun. 4 1650

    [29]

    Susi T, Meyer J C, Kotakoski J 2017 Ultramicroscopy 180 163

    [30]

    Lin J, Pantelides S T, Zhou W 2015 ACS Nano 9 5189

    [31]

    Susi T, Kotakoski J, Kepaptsoglou D, Mangler C, Lovejoy T C, Krivanek O L, Zan R, Bangert U, Ayala P, Meyer J C, Ramasse Q 2014 Phys. Rev. Lett. 113 115501

    [32]

    Vierimaa V, Krasheninnikov A V, Komsa H P 2016 Nanoscale 8 7949

    [33]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503

    [34]

    Komsa H P, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2013 Phys. Rev. B 88 035301

    [35]

    Sutter E, Huang Y, Komsa H P, Ghorbani-Asl M, Krasheninnikov A V, Sutter P 2016 Nano Lett. 16 4410

    [36]

    Kotakoski J, Meyer J C, Kurasch S, Santos-Cottin D, Kaiser U, Krasheninnikov A V 2011 Phys. Rev. B 83 245420

    [37]

    Kotakoski J, Krasheninnikov A V, Kaiser U, Meyer J C 2011 Phys. Rev. Lett. 106 105505

    [38]

    Yin K, Zhang Y Y, Zhou Y, Sun L, Chisholm M F, Pantelides S T, Zhou W 2017 2D Mater. 4 011001

    [39]

    Zhao J, Deng Q, Bachmatiuk A, Sandeep G, Popov A, Eckert J, Rmmeli M H 2014 Science 343 1228

    [40]

    Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J, Pantelides S T 2014 Nat. Nanotechnol. 9 436

    [41]

    Lin J, Zhang Y, Zhou W, Pantelides S T 2016 ACS Nano 10 2782

    [42]

    Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J H, Jin C H, Li J X, Wang X R, Sun L T, Guo W 2013 Nat. Commun. 4 1776

    [43]

    Shi Y, Zhou W, Lu A Y, Fang W, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J 2012 Nano Lett. 12 2784

    [44]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119

    [45]

    Gong Y, Lei S, Ye G, Li B, He Y, Keyshar K, Zhang X, Wang Q, Lou J, Liu Z, Vajtai R, Zhou W, Ajayan P M 2015 Nano Lett. 15 6135

    [46]

    Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    As thin as it gets 2017 Nat. Mater. 16 155

    [3]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509

    [4]

    Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S, Oxley M P, Pantelides S T, Pennycook S J 2010 Nature 464 571

    [5]

    Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, Kaiser U 2012 Phys. Rev. Lett. 108 196102

    [6]

    Suenaga K, Iizumi Y, Okazaki T 2011 Europ. Phys. J. Appl. Phys. 54 33508

    [7]

    Krivanek O L, Zhou W, Chisholm M F, Idrobo J C, Lovejoy T C, Ramasse Q M, Dellby N 2012 Gentle STEM of Single Atoms: Low keV Imaging and Analysis at Ultimate Detection Limits (West Sussex: John Wiley Sons, Ltd.) p119

    [8]

    Krivanek O L, Lovejoy T C, Dellby N, Carpenter R W 2013 Microscopy 62 3

    [9]

    Zhou W, Oxley M P, Lupini A R, Krivanek O L, Pennycook S J, Idrobo J C 2012 Microsc. Microanal. 18 1342

    [10]

    Krivanek O L, Lovejoy T C, Dellby N, Aoki T, Carpenter R W, Rez P, Soignard E, Zhu J, Batson P E, Lagos M J, Egerton R F, Crozier P A 2014 Nature 514 209

    [11]

    Jones L, Yang H, Pennycook T J, Marshall M S J, Aert S V, Browning N D, Castell M R, Nellist P D 2015 Advanced Structural and Chemical Imaging 1 8

    [12]

    Sang X, LeBeau J M 2014 Ultramicroscopy 138 28

    [13]

    Urban K W 2008 Science 321 506

    [14]

    Urban K W 2009 Nat. Mater. 8 260

    [15]

    Yankovich A B, Berkels B, Dahmen W, Binev P, Sanchez S I, Bradley S A, Li A, Szlufarska I, Voyles P M 2014 Nat. Commun. 5 4155

    [16]

    Gong Y, Liu Z, Lupini A R, Shi G, Lin J, Najmaei S, Lin Z, Elas A L, Berkdemir A, You G, Terrones H, Terrones M, Vajtai R, Pantelides S T, Pennycook S J, Lou J, Zhou W, Ajayan P M 2014 Nano Lett. 14 442

    [17]

    Zhou W, Pennycook S J, Idrobo J C 2012 Ultramicroscopy 119 51

    [18]

    Kapetanakis M D, Zhou W, Oxley M P, Lee J, Prange M P, Pennycook S J, Idrobo J C, Pantelides S T 2015 Phys. Rev. B 92 125147

    [19]

    Zhou W, Kapetanakis M D, Prange M P, Pantelides S T, Pennycook S J, Idrobo J C 2012 Phys. Rev. Lett. 109 206803

    [20]

    Zhou W, Lee J, Nanda J, Pantelides S T, Pennycook S J, Idrobo J C 2012 Nat. Nanotechnol. 7 161

    [21]

    Lin J, Fang W, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J, Pantelides S T 2013 Nano Lett. 13 3262

    [22]

    Brown L, Hovden R, Huang P, Wojcik M, Muller D A, Park J 2012 Nano Lett. 12 1609

    [23]

    Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135

    [24]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615

    [25]

    Hong J, Hu Z, Probert M, Li K, L D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J, Zhang Z 2015 Nat. Commun. 6 6293

    [26]

    Zou X, Liu Y, Yakobson B I 2013 Nano Lett. 13 253

    [27]

    Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754

    [28]

    Lee J, Zhou W, Pennycook S J, Idrobo J C, Pantelides S T 2013 Nat. Commun. 4 1650

    [29]

    Susi T, Meyer J C, Kotakoski J 2017 Ultramicroscopy 180 163

    [30]

    Lin J, Pantelides S T, Zhou W 2015 ACS Nano 9 5189

    [31]

    Susi T, Kotakoski J, Kepaptsoglou D, Mangler C, Lovejoy T C, Krivanek O L, Zan R, Bangert U, Ayala P, Meyer J C, Ramasse Q 2014 Phys. Rev. Lett. 113 115501

    [32]

    Vierimaa V, Krasheninnikov A V, Komsa H P 2016 Nanoscale 8 7949

    [33]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503

    [34]

    Komsa H P, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2013 Phys. Rev. B 88 035301

    [35]

    Sutter E, Huang Y, Komsa H P, Ghorbani-Asl M, Krasheninnikov A V, Sutter P 2016 Nano Lett. 16 4410

    [36]

    Kotakoski J, Meyer J C, Kurasch S, Santos-Cottin D, Kaiser U, Krasheninnikov A V 2011 Phys. Rev. B 83 245420

    [37]

    Kotakoski J, Krasheninnikov A V, Kaiser U, Meyer J C 2011 Phys. Rev. Lett. 106 105505

    [38]

    Yin K, Zhang Y Y, Zhou Y, Sun L, Chisholm M F, Pantelides S T, Zhou W 2017 2D Mater. 4 011001

    [39]

    Zhao J, Deng Q, Bachmatiuk A, Sandeep G, Popov A, Eckert J, Rmmeli M H 2014 Science 343 1228

    [40]

    Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J, Pantelides S T 2014 Nat. Nanotechnol. 9 436

    [41]

    Lin J, Zhang Y, Zhou W, Pantelides S T 2016 ACS Nano 10 2782

    [42]

    Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J H, Jin C H, Li J X, Wang X R, Sun L T, Guo W 2013 Nat. Commun. 4 1776

    [43]

    Shi Y, Zhou W, Lu A Y, Fang W, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J 2012 Nano Lett. 12 2784

    [44]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119

    [45]

    Gong Y, Lei S, Ye G, Li B, He Y, Keyshar K, Zhang X, Wang Q, Lou J, Liu Z, Vajtai R, Zhou W, Ajayan P M 2015 Nano Lett. 15 6135

    [46]

    Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170

  • [1] 孙真昊, 管鸿明, 付雷, 沈波, 唐宁. 二维原子层谷电子学材料和器件. 物理学报, 2021, 70(2): 027302. doi: 10.7498/aps.70.20201415
    [2] 王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣. 二维Janus原子晶体的电子性质. 物理学报, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [3] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [4] 王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷. 二维原子晶体的转移堆叠方法及其高质量电子器件的研究进展. 物理学报, 2021, 70(13): 138202. doi: 10.7498/aps.70.20210929
    [5] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器. 物理学报, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [6] 孙家涛, 孟胜. 电子的谷自由度. 物理学报, 2015, 64(18): 187301. doi: 10.7498/aps.64.187301
    [7] 赵寰宇, 何存富, 吴斌, 汪越胜. 二维正方晶格多点缺陷声子晶体实验研究. 物理学报, 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [8] 曹永军, 江鑫. 二维磁振子晶体中线缺陷模的性质及其应用. 物理学报, 2013, 62(8): 087501. doi: 10.7498/aps.62.087501
    [9] 王春华, 徐浩, 万钊, 胡燕. 基于金属氧化物半导体晶体管Colpitts混沌振荡电路及其同步研究. 物理学报, 2013, 62(20): 208401. doi: 10.7498/aps.62.208401
    [10] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [11] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [12] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管 . 物理学报, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [13] 岳蕾蕾, 陈雨, 樊光辉, 何娇, 赵德荀, 刘应开. 缺陷态对4340钢-环氧树脂二维声子晶体带隙的影响. 物理学报, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [14] 温才, 李方华, 邹进, 陈弘. AlSb/GaAs(001)失配位错的高分辨电子显微学研究. 物理学报, 2010, 59(3): 1928-1937. doi: 10.7498/aps.59.1928
    [15] 张浩, 赵建林, 张晓娟. 带缺陷结构的二维磁性光子晶体的数值模拟分析. 物理学报, 2009, 58(5): 3532-3537. doi: 10.7498/aps.58.3532
    [16] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性. 物理学报, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [17] 蔡群, M.S.ALTMAN. W(110)面二维氧化的低能电子显微镜研究. 物理学报, 1997, 46(6): 1048-1054. doi: 10.7498/aps.46.1048
    [18] 李宗全, 沈辉, 秦勇. 晶体表面微观结构的反射电子显微术观察. 物理学报, 1991, 40(1): 89-92. doi: 10.7498/aps.40.89
    [19] 李龙, 李方华, 杨大宇, 田静华, 林振金. Ce1+εFe4B4合金一维无公度调制结构的透射电子显微镜研究. 物理学报, 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [20] 杨翠英, 张道范, 吴星, 周玉清, 冯国光. 光折变BaTiO3晶体缺陷的分析电子显微镜研究. 物理学报, 1989, 38(12): 2003-2007. doi: 10.7498/aps.38.2003
计量
  • 文章访问数:  3379
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-30
  • 修回日期:  2017-09-16
  • 刊出日期:  2017-11-05

二维原子晶体的低电压扫描透射电子显微学研究

  • 1. 中国科学院大学物理科学学院, 北京 100049;
  • 2. 中国科学院大学, 中国科学院真空物理重点实验室, 北京 100049
  • 通信作者: 周武, wuzhou@ucas.ac.cn
    基金项目: 国家自然科学基金(批准号:51622211)和中国科学院率先行动百人计划资助的课题.

摘要: 二维原子晶体材料,如石墨烯和过渡金属硫族化合物等,具有不同于其块体的独特性能,有望在二维半导体器件中得到广泛应用.晶体中的结构缺陷对材料的物理化学性能有直接的影响,因此研究结构缺陷和局域物性之间的关联是当前二维原子晶体研究中的重要内容,需要高空间分辨率的结构研究手段.由于绝大部分二维原子晶体在高能量高剂量的电子束辐照下容易发生结构损伤,利用电子显微方法对二维原子晶体缺陷的研究面临诸多挑战.低电压球差校正扫描透射电子显微(STEM)技术的发展,一个主要目标就是希望在不损伤结构的前提下对二维原子晶体的本征结构缺陷进行研究.在STEM下,多种不同的信号能够被同步采集,包括原子序数衬度高分辨像和电子能量损失谱等,是表征二维原子晶体缺陷的有力工具,不但能对材料的本征结构进行单原子尺度的成像和能谱分析,还能记录材料结构的动态变化.通过调节电子束加速电压和电子辐照剂量,扫描透射电子显微镜也可以作为电子刻蚀二维原子晶体材料的平台,用于加工新型纳米结构以及探索新型二维原子晶体的原位制备.本综述主要以本课题组在石墨烯和二维过渡金属硫族化合物体系的研究为例,介绍低电压扫描透射电子显微学在二维原子晶体材料研究中的实际应用.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回