搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维光子晶体中赝磁场作用下的电磁波操控

杨玉婷 钱欣悦 石礼伟

引用本文:
Citation:

二维光子晶体中赝磁场作用下的电磁波操控

杨玉婷, 钱欣悦, 石礼伟

Manipulation of electromagnetic waves induced by pseudomagnetic fields in two dimensional photonic crystals

Yang Yu-Ting, Qian Xin-Yue, Shi Li-Wei
PDF
HTML
导出引用
  • 在经典波系统中, 赝磁场作为人工合成的规范场, 可以像真实磁场一样调控波的传输, 从而受到了人们的广泛关注. 本文利用在二维光子晶体中引入单向线性梯度形变的方式, 构建空间均匀分布的赝磁场. 强赝磁场的存在导致光子晶体出现朗道能级量子化. 与真实磁场不同, 光子晶体赝磁场在两个不等价的能谷中相反, 系统的时间反演对称性没有被打破. 设计的光子晶体支持边界态的输运, 并且能够使波束的传输路径发生弯曲. 将具有相反赝磁场的光子晶体构造在一起还能够实现有趣的“蛇态”传输, 为操控电磁波的传输并设计信息处理器件提供了良好的平台.
    Many interesting phenomena, such as quantization of Landau levels and quantum Hall effect, can occur in an electronic system under a strong magnetic field. However, photons do not carry charge, and they do not have many properties induced by external magnetic fields, either. Recently, the pseudomagnetic field, an artificial synthetic gauge field, has attracted intense research interest in classical wave systems, in which the propagation of the wave can be manipulated like in a real magnetic field. The photonic crystal is an optical structure composed of periodic material distributions and provides a good platform for studying the control of electromagnetic waves. In this work, we construct a uniform pseudomagnetic field by introducing uniaxial linear gradient deformation of metallic rods in a two-dimensional photonic crystal. The strong pseudomagnetic field leads to the quantization of photonic Landau levels in photonic crystal. The sublattice polarization of n = 0 Landau level is also demonstrated in our simulations. Unlike the real magnetic field, the pseudomagnetic fields of photonic crystal is opposite in two inequivalent energy valleys, and the time-reversal symmetry of the system is not broken. Our designed gradient photonic crystals support the transport of edge state in the gap between n = 0 and n = ±1 Landau levels. The edge state can propagate unidirectionally when it is excited by a chiral source. When a gaussian beam impinges on the photonic crystal, the propagating paths of two splitting beams can be controlled, which gives rise to the bend of two beams. Two photonic crystals with opposite pseudomagnetic fields are assembled together, and the interesting phenomenon of “snake-state” can be obtained. Our proposal opens the way for designing information processing devices by manipulating electromagnetic waves.
      通信作者: 杨玉婷, yangyt@cumt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12004425)、江苏省自然科学基金 (批准号: BK20200630)、徐州市基础研究计划(批准号: KC22016)、中国矿业大学重点学科经费(批准号: 2022WLXK06)和江苏省青蓝工程资助的课题.
      Corresponding author: Yang Yu-Ting, yangyt@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004425), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200630), the Basic Research Program of Xuzhou City, China (Grant No. KC22016), the Key Academic Discipline Project of China University of Mining and Technology (Grant No. 2022WLXK06), and the Qing Lan Project of Jiangsu Province, China.
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, Den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [4]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544Google Scholar

    [5]

    Salerno G, Ozawa T, Price H M, Carusotto I 2015 2D Mater. 2 034015Google Scholar

    [6]

    Salerno G, Ozawa T, Price H M, Carusotto I 2017 Phys. Rev. B 95 245418Google Scholar

    [7]

    Lantagne-Hurtubise É, Zhang X X, Franz M 2020 Phys. Rev. B 101 085423Google Scholar

    [8]

    Wu B L, Wei Q, Zhang Z Q, Jiang H 2021 Chin. Phys. B 30 030504Google Scholar

    [9]

    Brendel C, Peano V, Painter O J, Marquardt F 2017 Proc. Natl. Acad. Sci. 114 3390

    [10]

    Abbaszadeh H, Souslov A, Paulose J, Schomerus H 2017 Phys. Rev. Lett. 119 195502Google Scholar

    [11]

    Yang Z J, Gao F, Yang Y H, Zhang B L 2017 Phys. Rev. Lett. 118 194301Google Scholar

    [12]

    Wen X H, Qiu C Y, Qi Y J, Ye L P, Ke M Z, Zhang F, Liu Z Y 2019 Nat. Phys. 15 352Google Scholar

    [13]

    Luo J C, Feng L Y, Huang H B, Chen J J 2019 Phys. Lett. A 383 125974Google Scholar

    [14]

    Rechtsman M C, Zeuner J M, Tünnermann A, Nolte S 2013 Nat. Photonics 7 153Google Scholar

    [15]

    Schomerus H, Halpern N Y 2013 Phys. Rev. Lett. 110 013903Google Scholar

    [16]

    Jamadi O, Rozas E, Salerno G, Milicevic M, Ozawa T, Sagnes I, Lemaitre A, Gratiet L L, Harouri A, Carusotto I, Bloch J, Amo A 2020 Light Sci. Appl. 9 144Google Scholar

    [17]

    Bellec M, Poli C, Kuhl U, Mortessagne F, Schomerus H 2020 Light Sci. Appl. 9 146Google Scholar

    [18]

    Mann C R, Horsley S A R, Mariani E 2020 Nat. Photonics 14 669Google Scholar

    [19]

    Guglielmon J, Rechtsman M C, Weinstein M I 2021 Phys. Rev. A 103 013505Google Scholar

    [20]

    Huang Z T, Hong K B, Lee R K, Pilozzi L, Conti C, Wu S J, Lu T C 2021 arXiv: 211010050 [physics. optics]

    [21]

    Jamotte M, Goldman N, Di Liberto M 2022 Commun. Phys. 5 30Google Scholar

    [22]

    Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang K, Chen H 2014 Opt. Express 22 23605Google Scholar

    [23]

    Deng F S, Li Y M, Sun Y, Wang X, Guo Z W, Shi Y L, Jiang H T, Chang K, Chen H 2015 Opt. Lett. 40 3380Google Scholar

    [24]

    Oroszlány L, Rakyta P, Kormányos A, Lambert C J, Cserti J 2008 Phys. Rev. B 77 081403Google Scholar

    [25]

    Ghosh T K, De Martino A, Häusler W, Dell L, Egger R 2008 Phys. Rev. B 77 081404Google Scholar

    [26]

    Williams J R, Marcus C M 2011 Phys. Rev. Lett. 107 046602Google Scholar

    [27]

    Taychatanapat T, Tan J Y, Yeo Y, Watanabe K, Taniguchi T, Ozyilmaz B 2015 Nat. Commun 6 6093Google Scholar

    [28]

    Rickhaus P, Makk P, Liu M H, Tovari E, Weiss M, Maurand R, Richter K, Schonenberger C 2015 Nat. Commun. 6 6470Google Scholar

    [29]

    Cohnitz L, Häusler W, Zazunov A, Egger R 2015 Phys. Rev. B 92 085422Google Scholar

    [30]

    Ren Y N, Zhuang Y C, Sun Q F, He L 2022 Phys. Rev. Lett. 129 076802Google Scholar

    [31]

    Yan M, Deng W Y, Huang X Q, Wu Y, Yang Y, Lu J Y, Liu Z Y 2021 Phys. Rev. Lett. 127 136401Google Scholar

    [32]

    Zuo C Y, Qi J J, Lu T L, Bao Z Q, Li Y 2022 Phys. Rev. B 105 195420Google Scholar

  • 图 1  (a) 二维三角晶格光子晶体原胞示意图; (b)狄拉克点的偏移量与(q p)/p呈线性关系; (c)—(e) 分别为当q = 5, 6和7 mm时光子晶体的能带图

    Fig. 1.  (a) Schematic of a unit cell of a two-dimensional triangular photonic crystal; (b) linear relation between the shift of Dirac point and (p q)/p; (c)–(e) band diagram of photonic crystal for q = 5, 6 and 7 mm, respectively.

    图 2  朗道能级量子化 (a)梯度光子晶体结构示意图; (b)光子晶体的本征模式电场分布图; (c), (d) 在y方向上有37层金属柱的光子晶体的投影能带; (e), (f) 分别为y方向有19层和91层金属柱的光子晶体的投影能带

    Fig. 2.  Landau quantization: (a) Schematic of a gradient photonic crystal; (b) electric field distribution of eigenmode of photonic crystal; (c), (d) projected band of a photonic crystal with 37 layers along y direction; (e), (f) projected band of photonic crystals with 19 and 91 layers, respectively.

    图 3  n = 0朗道能级的子晶格极化 (a), (b) 激发源分别放在梯度光子晶体AB子晶格位置时电场积分频谱; (c), (d)激发源在A子晶格时的电场分布; (e), (f) 激发源在B子晶格时的电场分布

    Fig. 3.  Sublattice polarization of n = 0 Landau level: (a), (b) Integration of electric field when the excitation source is placed at A and B sublattices of a gradient photonic crystal; (c), (d) the electric field distribution for the excitation source at A sublattice; (e), (f) electric field distribution for the excitation source at B sublattice.

    图 4  (a)—(d) 梯度光子晶体中下边界处的边界态传输情况; (e), (f) 上边界处边界态在不同频率时的传输情况; (g), (h) 手性激发源激发单向传输的边界态

    Fig. 4.  (a)–(d) Transport of edge state on the bottom side of a gradient photonic crystal; (e), (f) edge state on the upper side at different frequencies; (g), (h) unidirectional transport of edge state excited by a chiral source.

    图 5  (a) 光子晶体(金属圆柱)中的光束分裂; (b) 梯度光子晶体中的赝磁场导致分裂的两束波呈向内弯曲现象; (c)减小光子晶体中的赝磁场, 波束弯曲效应减弱; (d) 反转光子晶体的梯度变化, 两束波都向外弯折

    Fig. 5.  (a) Beam splitting in a photonic crystal composed of circular metallic rods; (b) bend of two beams in a gradient photonic crystal caused by pseudomagnetic field; (c) weakness of bending wave beam in decreasing pseudomagnetic field; (d) bending wave beams in inverted gradient photonic crystal.

    图 6  (a)具有相反赝磁场的光子晶体结构示意图; (b), (c)具有过渡区的光子晶体投影能带; (d) 频率为8.84 GHz时“蛇态”的电场分布

    Fig. 6.  (a) Schematic diagram of two photonic crystal structures with opposite pseudomagnetic fields; (b), (c) projected bands of gradient photonic crystals with transition regions; (d) electric field distribution of snake state at 8.84 GHz.

  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, Den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [4]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544Google Scholar

    [5]

    Salerno G, Ozawa T, Price H M, Carusotto I 2015 2D Mater. 2 034015Google Scholar

    [6]

    Salerno G, Ozawa T, Price H M, Carusotto I 2017 Phys. Rev. B 95 245418Google Scholar

    [7]

    Lantagne-Hurtubise É, Zhang X X, Franz M 2020 Phys. Rev. B 101 085423Google Scholar

    [8]

    Wu B L, Wei Q, Zhang Z Q, Jiang H 2021 Chin. Phys. B 30 030504Google Scholar

    [9]

    Brendel C, Peano V, Painter O J, Marquardt F 2017 Proc. Natl. Acad. Sci. 114 3390

    [10]

    Abbaszadeh H, Souslov A, Paulose J, Schomerus H 2017 Phys. Rev. Lett. 119 195502Google Scholar

    [11]

    Yang Z J, Gao F, Yang Y H, Zhang B L 2017 Phys. Rev. Lett. 118 194301Google Scholar

    [12]

    Wen X H, Qiu C Y, Qi Y J, Ye L P, Ke M Z, Zhang F, Liu Z Y 2019 Nat. Phys. 15 352Google Scholar

    [13]

    Luo J C, Feng L Y, Huang H B, Chen J J 2019 Phys. Lett. A 383 125974Google Scholar

    [14]

    Rechtsman M C, Zeuner J M, Tünnermann A, Nolte S 2013 Nat. Photonics 7 153Google Scholar

    [15]

    Schomerus H, Halpern N Y 2013 Phys. Rev. Lett. 110 013903Google Scholar

    [16]

    Jamadi O, Rozas E, Salerno G, Milicevic M, Ozawa T, Sagnes I, Lemaitre A, Gratiet L L, Harouri A, Carusotto I, Bloch J, Amo A 2020 Light Sci. Appl. 9 144Google Scholar

    [17]

    Bellec M, Poli C, Kuhl U, Mortessagne F, Schomerus H 2020 Light Sci. Appl. 9 146Google Scholar

    [18]

    Mann C R, Horsley S A R, Mariani E 2020 Nat. Photonics 14 669Google Scholar

    [19]

    Guglielmon J, Rechtsman M C, Weinstein M I 2021 Phys. Rev. A 103 013505Google Scholar

    [20]

    Huang Z T, Hong K B, Lee R K, Pilozzi L, Conti C, Wu S J, Lu T C 2021 arXiv: 211010050 [physics. optics]

    [21]

    Jamotte M, Goldman N, Di Liberto M 2022 Commun. Phys. 5 30Google Scholar

    [22]

    Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang K, Chen H 2014 Opt. Express 22 23605Google Scholar

    [23]

    Deng F S, Li Y M, Sun Y, Wang X, Guo Z W, Shi Y L, Jiang H T, Chang K, Chen H 2015 Opt. Lett. 40 3380Google Scholar

    [24]

    Oroszlány L, Rakyta P, Kormányos A, Lambert C J, Cserti J 2008 Phys. Rev. B 77 081403Google Scholar

    [25]

    Ghosh T K, De Martino A, Häusler W, Dell L, Egger R 2008 Phys. Rev. B 77 081404Google Scholar

    [26]

    Williams J R, Marcus C M 2011 Phys. Rev. Lett. 107 046602Google Scholar

    [27]

    Taychatanapat T, Tan J Y, Yeo Y, Watanabe K, Taniguchi T, Ozyilmaz B 2015 Nat. Commun 6 6093Google Scholar

    [28]

    Rickhaus P, Makk P, Liu M H, Tovari E, Weiss M, Maurand R, Richter K, Schonenberger C 2015 Nat. Commun. 6 6470Google Scholar

    [29]

    Cohnitz L, Häusler W, Zazunov A, Egger R 2015 Phys. Rev. B 92 085422Google Scholar

    [30]

    Ren Y N, Zhuang Y C, Sun Q F, He L 2022 Phys. Rev. Lett. 129 076802Google Scholar

    [31]

    Yan M, Deng W Y, Huang X Q, Wu Y, Yang Y, Lu J Y, Liu Z Y 2021 Phys. Rev. Lett. 127 136401Google Scholar

    [32]

    Zuo C Y, Qi J J, Lu T L, Bao Z Q, Li Y 2022 Phys. Rev. B 105 195420Google Scholar

  • [1] 董爱军, 高志福, 杨晓峰, 王娜, 刘畅, 彭秋和. 在超强磁场中修正的相对论电子压强. 物理学报, 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [2] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [3] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [4] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [5] 郗翔, 叶康平, 伍瑞新. 偏置磁场方向对磁性光子晶体能带结构的影响及其在构建拓扑边界态中的作用. 物理学报, 2020, 69(15): 154102. doi: 10.7498/aps.69.20200198
    [6] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体中V型三能级原子的自发辐射. 物理学报, 2017, 66(1): 014202. doi: 10.7498/aps.66.014202
    [7] 邓富胜, 孙勇, 刘艳红, 董丽娟, 石云龙. 光子石墨烯中赝磁场作用下的谷霍尔效应. 物理学报, 2017, 66(14): 144204. doi: 10.7498/aps.66.144204
    [8] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体环境下二能级原子自发辐射场及频谱的特性. 物理学报, 2016, 65(19): 194204. doi: 10.7498/aps.65.194204
    [9] 卢亚鑫, 马宁. 耦合电磁场对石墨烯量子磁振荡的影响. 物理学报, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [10] 宋冬灵, 明亮, 单昊, 廖天河. 超强磁场下电子朗道能级稳定性及对电子费米能的影响. 物理学报, 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [11] 朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东. 多系双局域态光子晶体的可调谐滤波特性分析. 物理学报, 2015, 64(3): 034209. doi: 10.7498/aps.64.034209
    [12] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级. 物理学报, 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [13] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [14] 邢容, 谢双媛, 许静平, 羊亚平. 动态各向同性光子晶体中二能级原子的自发辐射. 物理学报, 2014, 63(9): 094205. doi: 10.7498/aps.63.094205
    [15] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] 李乾利, 温廷敦, 许丽萍, 王志斌. 单轴应力对一维镜像光子晶体光子局域态透射峰的影响. 物理学报, 2013, 62(18): 184212. doi: 10.7498/aps.62.184212
    [17] 李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇. 外磁场与温度对低温超导光子晶体低频禁带特性的影响. 物理学报, 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [18] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠. 物理学报, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [19] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究. 物理学报, 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [20] 刘晓东, 王义全, 许兴胜, 程丙英, 张道中. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制. 物理学报, 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
计量
  • 文章访问数:  3599
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-05-12
  • 上网日期:  2023-05-13
  • 刊出日期:  2023-07-05

/

返回文章
返回