搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在超强磁场中修正的相对论电子压强

董爱军 高志福 杨晓峰 王娜 刘畅 彭秋和

引用本文:
Citation:

在超强磁场中修正的相对论电子压强

董爱军, 高志福, 杨晓峰, 王娜, 刘畅, 彭秋和

Modified pressure of relativistic electrons in a superhigh magnetic field

Dong Ai-Jun, Gao Zhi-Fu, Yang Xiao-Feng, Wang Na, Liu Chang, Peng Qiu-He
PDF
HTML
导出引用
  • 当前脉冲星领域一个重要的研究热点是磁星. 本文在朱翠等(Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H 2016 Mod. Phys. Lett. A 31 1650070)工作的基础上, 重新研究了磁星超强磁场下($B\gg B$cr, Bcr是电子的量子临界磁场)电子朗道能级的稳定性及其对电子压强的影响. 首先, 对弱磁场极限下($B\ll B$cr) 中子星内部电子压强进行必要的回顾; 然后, 通过引入电子朗道能级稳定性系数gν和Dirac-δ函数, 推导出在超强磁场下修正的相对论电子压强Pe的表达式, 给出表达式适用条件: 物质密度ρ ≥ 107 g·cm–3BcrB < 1017 G (1 G = 10–4 T). 超强磁场通过修正相对论电子的相空间, 提高了电子数密度ne, 而ne的增加意味着Pe的增加. 利用修正的电子压强表达式, 讨论了超强磁场下费米子自旋极化现象、电子磁化现象以及超强磁场对物态方程的修正. 最后, 本文的结果与其他类似工作进行对比, 并对未来的工作进行展望. 本文的研究将为磁星以及强磁化白矮星的物态方程和热演化的探索提供极有价值的参考, 将为普通射电脉冲星等离子磁层数值模拟、高磁场脉冲星辐射机制等相关研究提供有用的信息.
    Magnetar is a kind of pulsar powered by magnetic field energy. The study of magnetars is an important hotspot in the field of pulsars. In this paper, according to the work of Zhu Cui, et al. (Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H 2016 Mod. Phys. Lett. A 31 1650070), we reinvestigate the Landau-level stability of electrons in a superhigh magnetic field (SMF), $B\gg B_{\rm cr}$(Bcr is a quantum critical magnetic field with a value of 4.414×1013 G), and its influence on the pressure of electrons in magnetar. First, we briefly review the pressure of electrons in neutron star (NS) with a weak-magnetic field limit ($ B\ll B $cr). Then, we introduce an electron Landau level stability coefficient gν and a Dirac-δ function to deduce a modified pressure formula for the degenerate and relativistic electrons in an SMF in an application range of matter density ρ ≥ 107 g·cm–3 and Bcr $ \ll $B < 1017 G. By modifying the phase space of relativistic electrons, the SMF can enhance the electron number density ne, and reduce the maximum of electron Landau level number νmax, which results in a redistribution of electrons. As B increases, more and more electrons will occupy higher Landau levels, and the electron Landau level stability coefficient gν will decrease with the augment of Landau energy-level number ν. By modifying the phase space of relativistic electrons, the electron number density ne increases with the MF strength increasing, leading the electron pressure Pe to increase. Utilizing the modified expression of electron pressure, we discuss the phenomena of Fermion spin polarization and electron magnetization in the SMF, and the modification of the equation of state by the SMF. We calculate the baryon number density, magnetization pressure, and the difference between pressures in the direction parallel to and perpendicular to the magnetic field in the frame of the relativistic mean field model. Moreover, we find that the pressure anisotropy due to the strong magnetic field is very small and can be ignored in the present model. We compare our results with the results from other similar studies, and examine their similarities and dissimilarities. The similarities include 1) the abnormal magnetic moments of electrons and the interaction between them are ignored; 2) the electron pressure relate to magnetic field intensity B, electron number density ne and electron Fermi energy $E_{{\rm{F}}}^{{\rm{e}}}$, and the latter two are complex functions containing B; 3) with ne and $E_{{\rm{F}}}^{{\rm{e}}}$ fixed, Pe increases with B rising; 4) as B increases, the pressure-density curves fitted by the results from other similar studies have irregular protrusions or fluctuations, which are caused by the transformation of electron energy state from partial filling to complete filling at the ν-level or the transition of electrons from the ν to the (ν+1)-level. This phenomenon is believed to relate to the behavior of electrons near the Fermi surface in a strong magnetic field, which essentially reflects the Landau level instability. Finally, the future research direction is prospected. The present results provide a reference for future studies of the equation of state and emission mechanism of high-B pulsar, magnetar and strongly magnetized white dwarf.
      通信作者: 高志福, zhifugao@xao.ac.cn
    • 基金项目: 国家自然科学基金 (批准号: 12041304, U1831120)、新疆维吾尔自治区自然科学基金 (批准号: 2022D01A155)、贵州省科技计划(批准号: [2019]1241, KY(2020)003)和中科院高层次人才计划择优支持项目(批准号: [2019]085)资助的课题.
      Corresponding author: Gao Zhi-Fu, zhifugao@xao.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12041304, U1831120), the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2022D01A155), the Natural Science Foundation of Guizhou, China (Grant Nos. [2019]1241, KY(2020)003), and the High Level Talent Program support project of Chinese Academy of Sciences, China (Grant No. [2019]085).
    [1]

    Duncan R C, Thompson C 1992 Astrophys. J. 392 L9Google Scholar

    [2]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [3]

    Gao Z F, Wang N, Shan H, Li, X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [4]

    Kaspi V M, Beloborodov A M 2017 Ann. Rev. Astron. Astrophys. 55 261Google Scholar

    [5]

    Shen J, Wang Y, Zhou T, Ji H 2017 Astrophys. J. 835 43Google Scholar

    [6]

    Shen J, Ji H, Su Y 2022 Res. Astron. Astrophys. 22 015019Google Scholar

    [7]

    Mereghetti S, Pons J A, Melatos A 2015 Space Sci. Rev. 191 315Google Scholar

    [8]

    Zhao X F 2019 Int. J. Theor. Phys. 58 1060Google Scholar

    [9]

    Zhao X F 2019 Astrophys. Space Sci. 364 38Google Scholar

    [10]

    Zhao X F 2020 Chin. J. Phys. 3 240Google Scholar

    [11]

    Rabhi A, Pérez-García M A, Providéncia C, Vidaña I 2015 Phys. Rev. C 91 045803Google Scholar

    [12]

    Chatterjee D, Elghozi T, Novak J, Oertel M 2015 Mon. Not. R. Astron. Soc. 447 3785Google Scholar

    [13]

    Shen J, Zhou T, Ji H, Wiegelmann T, Inhester B, Feng L 2014 Astrophys. J. 791 83Google Scholar

    [14]

    Farooq F, Nabi J U, Shehzadi R 2021 Astrophys. Space Sci. 366 86Google Scholar

    [15]

    Liu J J, Liu D M 2018 Eur. Phys. J. C 78 84Google Scholar

    [16]

    Liu J J, Gu W M 2016 Astrophys. J. Suppl. Ser. 224 29Google Scholar

    [17]

    Liu J J, Liu D M 2020 Astron. Nachr. 341 291Google Scholar

    [18]

    Liu J J, Liu D M 2018 Res. Astron. Astrophys. 18 8Google Scholar

    [19]

    Liu J J, Liu D M 2021 Publ. Astron. Soc. Pac. 133 4201Google Scholar

    [20]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett A 28 1350138Google Scholar

    [21]

    Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H 2016 Mod. Phys. Lett A 31 1650070Google Scholar

    [22]

    Kubo R 1965 Statistical Mechanics (Amsterdam: North-Holland Publ. Co.) pp278–280

    [23]

    Peng Q H, Zhang J, Chou C K 2016 EPJ Web. Conf. 10 907003Google Scholar

    [24]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, WangN, Peng Q H 2016 Int. J. Mod. Phys. D 25 165000Google Scholar

    [25]

    Lai D, Shapiro S L 1991 Astrophys. J. Lett. 383 745Google Scholar

    [26]

    Haensel P, Potekhin A Y, Yakovlev D G 2007 Neutron Stars 1: Equation of state and structure (Berlin: Springer) p326

    [27]

    Das U, Mukhopadhyay B 2012 Phys. Rev. D 86 042001Google Scholar

    [28]

    Chatterjee D, Fantina A F, Chamel N, Novak J, Oertel M 2017 Mon. Not. R. Astron. Soc. 469 95Google Scholar

    [29]

    Nandi R, Bandyopadhyay D 2013 J. Phy. Conf. Ser. 420 012144Google Scholar

    [30]

    Das U, Mukhopadhyay B 2015 J. Cosmol. Astropart. Phys. 05 045Google Scholar

    [31]

    Bera P, Bhattacharya D 2014 Mon. Not. R. Astron. Soc. 445 3951Google Scholar

    [32]

    Dong J M, Lombardo U, Zhang H F, Zuo W 2016 Astrophys. J. 817 6Google Scholar

    [33]

    Dong J M, Shang X L 2020 Phys. Rev. C 101 014305Google Scholar

    [34]

    Dong J M 2021 Mon. Not. R. Astron. Soc. 500 1505Google Scholar

    [35]

    Bordbar G H, Karami, M K 2022 Eur. Phys. J. C 82 74Google Scholar

    [36]

    Herrera L 2020 Phys. Rev. D 101 104024Google Scholar

    [37]

    Shulman G A 1991 Sov. Phys. Astron. 35 50

    [38]

    Mandal S, Chakrabarty S 2002 arXiv: astro-ph/0209015

    [39]

    Huang Z P, Yan Z, Shen Z Q, Tong H, Lin L, Yuan J P, Liu J, Zhao R S, Ge M Y, Wang R, 2021 Mon. Not. R. Astron. Soc. 505 1311Google Scholar

    [40]

    高志福 2007 硕士学位论文 (乌鲁木齐: 新疆大学)

    Gao Z F 2007 M. S. Thesis (Urumqi: Xinjiang University) (in Chinese)

    [41]

    王兆军, 吕国梁, 朱春花, 张军 2011 物理学报 60 049702Google Scholar

    Wang Z J, Lü G L, Zhu C H, Zhang J 2011 Acta Phys. Sin. 60 049702Google Scholar

    [42]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [43]

    Singh D, Saxena G 2012 Int. J. Mod. Phys. E 21 1250076Google Scholar

    [44]

    赵诗艺, 刘承志, 黄修林, 王夷博, 许妍 2021 物理学报 70 222601Google Scholar

    Zhao S Y, Liu C Z, Huang X L, Wang Y B, Xu Y 2021 Acta Phys. Sin. 70 222601Google Scholar

    [45]

    Gao Z F, Shan H, Wang W, Wang N 2017 Astron. Nachr. 338 1066Google Scholar

    [46]

    Wei F X, Mao G J, Ko C M, Kisslinger L S, Stöcker H, Greiner W 2006 J. Phys. G: Nucl. Part. 32 47Google Scholar

    [47]

    Ángeles Pérez-García M, Providência C, Rabhi A 2011 Phys. Rev. C 84 045803Google Scholar

    [48]

    Dong J M, Zuo W, Gu J 2013 Phys. Rev. C 87 103010Google Scholar

    [49]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys. Rev. L 79 2176Google Scholar

    [50]

    朗道 著 (周奇 译) 1963 连续媒介电动力学 (北京: 人民教育出版社) 第179—182页

    Landau L D, Lifshitz E M, Pitaevskii L P (translated by Zhou Q) 1963 Electrodynamics of Continuous Media (Beijing: People’s Education Press) pp179–182 (in Chinese)

    [51]

    Tolman R C 1939 Phys. Rev. 55 364Google Scholar

    [52]

    Demorest P B, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2016 Nature 4 67Google Scholar

    [53]

    Peng Q H, Tong H 2007 Mon. Not. R. Astron. Soc. 378 159Google Scholar

    [54]

    Fang R H, Dong R D, Hou D F, Sun B D 2021 Chin. Phys. Lett. 38 091201Google Scholar

    [55]

    Yuen R, Melrose D B, Samsuddin M A, Tu Z Y, Han X H 2016 Mon. Not. R. Astron. Soc. 459 603Google Scholar

    [56]

    Yuen R 2019 Mon. Not. R. Astron. Soc. 486 2011Google Scholar

    [57]

    Han X H, Yuen R 2021 Res. Astron. Astrophys. 21 228Google Scholar

    [58]

    Cheng Q, Zhang S N, Yu Y W, Zheng X P 2018 Phys. Rev. D 97 103012Google Scholar

    [59]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, van Kerkwijk M H, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, McLaughlin M A, Pennucci T T, Ransom S M, Stairs I H, van Leeuwen J, Verbiest J P W, Whelan D G 2013 Science 340 448Google Scholar

  • 图 1  中子星内部弱磁场极限下相对论电子压强Pe随电子数密度ne的变化

    Fig. 1.  Relativistic electron pressure Pe with electron number density ne in the limit of weak magnetic field inside a neutron star.

    图 2  不同磁场下中子星内部电子压强Pe随物质密度ρ的变化

    Fig. 2.  Relation between electron pressure Pe and matter density ρ in neutron stars with different magnetic fields.

    图 3  本文与其他强磁场中电子数密度和电子压强研究的对比 (a)强磁化白矮星中电子压强Peρ变化关系; (b)中子星壳层电子数密度neρ变化关系; (c)磁化白矮星中(最大电子费米能量EFmax = 20mec2)电子压强Peρ变化关系; (d) 两种不同的理论模型下白矮星中电子压强Peρ变化关系

    Fig. 3.  Study of electron number density and electron pressure in strong magnetic fields by other authors and their comparison with this work: (a) Relationship between electron pressure Pe and ρ in a strongly magnetized white dwarf (WD); (b) relationship between the electron number density ne and ρ in the crust of a neutron star; (c) electron pressure Pe as a function of ρ in a magnetized WD with maximum electron Fermi energy EFmax = 20mec2; (d) electron pressure Pe as a function of ρ in a magnetized WD under two different theoretical models.

    图 4  中子星内部费米子完全极化场景下饱和磁场强度Bs随粒子数密度n的变化关系 (a) 质子/电子完全极化下Bs vs. ne/np; (b) 中子完全极化下Bs vs. nB (nB为重子数密度)

    Fig. 4.  Relationship between the saturated magnetic field strength Bs and the particle number density n in a fully polarized neutron star fermion matter: (a) Bs vs. ne/np in a fully polarized scenario for proton/electron matter system; (b) Bs vs. nB in a fully polarized scenario for the neutron matter system (nB is the baryon number density).

    图 5  不同磁场下中子星内部相对论电子的磁化率χ与电子数密度ne的变化关系

    Fig. 5.  Relation between the magnetic susceptibility χ and number density of relativistic electrons ne in neutron stars with different magnetic field strengths.

    图 6  中子星内部磁场B随物质密度ρ的变化关系

    Fig. 6.  Relation of the magnetic field B and matter density ρ in a neutron star.

    表 1  在相对论平均场TMA参数模型下nN, $ E_{\text{F} }^{\text{e} } $, Pe, PM的部分计算值

    Table 1.  Partial calculations of nN, $ E_{\text{F} }^{\text{e} } $, Pe, P and M in a relativistic mean field model with the TMA parameter set.

    B$\ll $B *B > B *
    nN/fm–3$ E_{\text{F}}^{\text{e}} $/MeVPe/(MeV·fm–3)P/(MeV·fm–3)M/M$ E_{\text{F}}^{\text{e}} $/MeVPe/(MeV·fm–3)P/(MeV·fm–3)M/M
    0.00132.9244.9×10–103.78×10–60.02893.3518.41×10–103.79×10–60.0311
    0.021123.492.03×10–66.79×10–50.059327.622.88×10–67.36×10–50.0613
    0.077268.581.47×10–40.00210.051781.062.87×10–40.002580.0543
    0.1332107.899.04×10–40.01430.2904128.650.001820.01790.2932
    0.1554120.900.00140.02290.4201145.130.002950.07250.4241
    0.2003143.580.00280.04750.6884175.480.006320.08610.6965
    0.2338158.310.00420.07240.8808183.720.007620.09650.8912
    0.3206190.040.00870.16241.2945251.490.02670.21051.3062
    0.3556200.780.01080.20921.4236273.350.03720.27611.4327
    0.4186218.290.01510.30651.6071312.720.06370.42111.6223
    0.4746231.980.01930.40681.7263347.670.09740.58161.7412
    0.5446247.310.02490.54791.8312391.120.15610.82781.8522
    0.6076259.750.03040.68801.8947 429.700.22641.02721.9132
    0.6846273.650.03740.87371.9444456.800.29051.30921.9675
    0.7266280.730.04140.98091.9621480.230.35511.47821.9853
    0.8396298.230.05281.28451.9830526.730.51351.95212.0061
    0.9156318.400.06551.59251.9916586.650.74782.53162.0342
    下载: 导出CSV

    表 2  相对论平均场模型下nN, ρ, B, ne, |MB|, ΔPP// 的部分计算值, 这里选择TMA参数组和密度依赖的中子星强磁场模型

    Table 2.  Partial calculations of nN, ρ, B, ne, |MB|, ΔPP// in a relativistic mean field model. TMA parameter set and a density-dependent magnetic field model for a neutron star are selected.

    nN/fm–3ρ/(g·cm–3)B/Gne/cm–3|M|/G|MB|/(dyn·cm–2)ΔP/(dyn·cm–2)P///(dyn·cm–2)
    0.00132.535×10121.000×10141.051×10324.277×10114.277×10258.385×10261.196×1030
    0.02113.992×10131.003×10145.689×10342.841×10132.845×10273.641×10273.324×1031
    0.07221.014×10141.011×10141.418×10362.428×10142.485×10282.567×10288.147×1031
    0.13322.521×10141.073×10145.520×10366.049×10146.964×10287.055×10285.651×1031
    0.15542.940×10141.116×10147.781×10367.638×10149.508×10289.607×10282.509×1034
    0.20033.789×10141.247×10141.301×10371.089×10151.796×10291.708×10292.719×1034
    0.23384.423×10141.393×10141.744×10371.868×10152.604×10292.619×10293.049×1034
    0.32066.065×10142.011×10143.017×10375.406×10158.143×10298.175×10296.645×1034
    0.35566.727×10142.377×10143.563×10375.406×10151.285×10301.291×10308.716×1034
    0.41857.917×10143.237×10144.572×10377.676×10152.485×10302.493×10301.329×1035
    0.47468.978×10144.244×10144.580×10371.237×10165.203×10305.217×10301.836×1035
    0.54471.031×10155.860×10146.647×10372.249×10161.318×10311.321×10312.613×1035
    0.60761.145×10157.685×10147.704×10373.353×10162.577×10312.583×10313.243×1035
    0.68461.295×10151.042×10159.012×10375.225×10165.445×10315.453×10314.133×1035
    0.72651.375×10151.215×10159.725×10376.533×10167.932×10317.944×10314.675×1035
    0.83861.586×10151.763×10151.160×10381.109×10171.955×10321.958×10326.165×1035
    0.91561.774×10152.347×10151.342×10381.678×10173.938×10323.943×10327.996×1035
    下载: 导出CSV
  • [1]

    Duncan R C, Thompson C 1992 Astrophys. J. 392 L9Google Scholar

    [2]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [3]

    Gao Z F, Wang N, Shan H, Li, X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [4]

    Kaspi V M, Beloborodov A M 2017 Ann. Rev. Astron. Astrophys. 55 261Google Scholar

    [5]

    Shen J, Wang Y, Zhou T, Ji H 2017 Astrophys. J. 835 43Google Scholar

    [6]

    Shen J, Ji H, Su Y 2022 Res. Astron. Astrophys. 22 015019Google Scholar

    [7]

    Mereghetti S, Pons J A, Melatos A 2015 Space Sci. Rev. 191 315Google Scholar

    [8]

    Zhao X F 2019 Int. J. Theor. Phys. 58 1060Google Scholar

    [9]

    Zhao X F 2019 Astrophys. Space Sci. 364 38Google Scholar

    [10]

    Zhao X F 2020 Chin. J. Phys. 3 240Google Scholar

    [11]

    Rabhi A, Pérez-García M A, Providéncia C, Vidaña I 2015 Phys. Rev. C 91 045803Google Scholar

    [12]

    Chatterjee D, Elghozi T, Novak J, Oertel M 2015 Mon. Not. R. Astron. Soc. 447 3785Google Scholar

    [13]

    Shen J, Zhou T, Ji H, Wiegelmann T, Inhester B, Feng L 2014 Astrophys. J. 791 83Google Scholar

    [14]

    Farooq F, Nabi J U, Shehzadi R 2021 Astrophys. Space Sci. 366 86Google Scholar

    [15]

    Liu J J, Liu D M 2018 Eur. Phys. J. C 78 84Google Scholar

    [16]

    Liu J J, Gu W M 2016 Astrophys. J. Suppl. Ser. 224 29Google Scholar

    [17]

    Liu J J, Liu D M 2020 Astron. Nachr. 341 291Google Scholar

    [18]

    Liu J J, Liu D M 2018 Res. Astron. Astrophys. 18 8Google Scholar

    [19]

    Liu J J, Liu D M 2021 Publ. Astron. Soc. Pac. 133 4201Google Scholar

    [20]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett A 28 1350138Google Scholar

    [21]

    Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H 2016 Mod. Phys. Lett A 31 1650070Google Scholar

    [22]

    Kubo R 1965 Statistical Mechanics (Amsterdam: North-Holland Publ. Co.) pp278–280

    [23]

    Peng Q H, Zhang J, Chou C K 2016 EPJ Web. Conf. 10 907003Google Scholar

    [24]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, WangN, Peng Q H 2016 Int. J. Mod. Phys. D 25 165000Google Scholar

    [25]

    Lai D, Shapiro S L 1991 Astrophys. J. Lett. 383 745Google Scholar

    [26]

    Haensel P, Potekhin A Y, Yakovlev D G 2007 Neutron Stars 1: Equation of state and structure (Berlin: Springer) p326

    [27]

    Das U, Mukhopadhyay B 2012 Phys. Rev. D 86 042001Google Scholar

    [28]

    Chatterjee D, Fantina A F, Chamel N, Novak J, Oertel M 2017 Mon. Not. R. Astron. Soc. 469 95Google Scholar

    [29]

    Nandi R, Bandyopadhyay D 2013 J. Phy. Conf. Ser. 420 012144Google Scholar

    [30]

    Das U, Mukhopadhyay B 2015 J. Cosmol. Astropart. Phys. 05 045Google Scholar

    [31]

    Bera P, Bhattacharya D 2014 Mon. Not. R. Astron. Soc. 445 3951Google Scholar

    [32]

    Dong J M, Lombardo U, Zhang H F, Zuo W 2016 Astrophys. J. 817 6Google Scholar

    [33]

    Dong J M, Shang X L 2020 Phys. Rev. C 101 014305Google Scholar

    [34]

    Dong J M 2021 Mon. Not. R. Astron. Soc. 500 1505Google Scholar

    [35]

    Bordbar G H, Karami, M K 2022 Eur. Phys. J. C 82 74Google Scholar

    [36]

    Herrera L 2020 Phys. Rev. D 101 104024Google Scholar

    [37]

    Shulman G A 1991 Sov. Phys. Astron. 35 50

    [38]

    Mandal S, Chakrabarty S 2002 arXiv: astro-ph/0209015

    [39]

    Huang Z P, Yan Z, Shen Z Q, Tong H, Lin L, Yuan J P, Liu J, Zhao R S, Ge M Y, Wang R, 2021 Mon. Not. R. Astron. Soc. 505 1311Google Scholar

    [40]

    高志福 2007 硕士学位论文 (乌鲁木齐: 新疆大学)

    Gao Z F 2007 M. S. Thesis (Urumqi: Xinjiang University) (in Chinese)

    [41]

    王兆军, 吕国梁, 朱春花, 张军 2011 物理学报 60 049702Google Scholar

    Wang Z J, Lü G L, Zhu C H, Zhang J 2011 Acta Phys. Sin. 60 049702Google Scholar

    [42]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [43]

    Singh D, Saxena G 2012 Int. J. Mod. Phys. E 21 1250076Google Scholar

    [44]

    赵诗艺, 刘承志, 黄修林, 王夷博, 许妍 2021 物理学报 70 222601Google Scholar

    Zhao S Y, Liu C Z, Huang X L, Wang Y B, Xu Y 2021 Acta Phys. Sin. 70 222601Google Scholar

    [45]

    Gao Z F, Shan H, Wang W, Wang N 2017 Astron. Nachr. 338 1066Google Scholar

    [46]

    Wei F X, Mao G J, Ko C M, Kisslinger L S, Stöcker H, Greiner W 2006 J. Phys. G: Nucl. Part. 32 47Google Scholar

    [47]

    Ángeles Pérez-García M, Providência C, Rabhi A 2011 Phys. Rev. C 84 045803Google Scholar

    [48]

    Dong J M, Zuo W, Gu J 2013 Phys. Rev. C 87 103010Google Scholar

    [49]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys. Rev. L 79 2176Google Scholar

    [50]

    朗道 著 (周奇 译) 1963 连续媒介电动力学 (北京: 人民教育出版社) 第179—182页

    Landau L D, Lifshitz E M, Pitaevskii L P (translated by Zhou Q) 1963 Electrodynamics of Continuous Media (Beijing: People’s Education Press) pp179–182 (in Chinese)

    [51]

    Tolman R C 1939 Phys. Rev. 55 364Google Scholar

    [52]

    Demorest P B, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2016 Nature 4 67Google Scholar

    [53]

    Peng Q H, Tong H 2007 Mon. Not. R. Astron. Soc. 378 159Google Scholar

    [54]

    Fang R H, Dong R D, Hou D F, Sun B D 2021 Chin. Phys. Lett. 38 091201Google Scholar

    [55]

    Yuen R, Melrose D B, Samsuddin M A, Tu Z Y, Han X H 2016 Mon. Not. R. Astron. Soc. 459 603Google Scholar

    [56]

    Yuen R 2019 Mon. Not. R. Astron. Soc. 486 2011Google Scholar

    [57]

    Han X H, Yuen R 2021 Res. Astron. Astrophys. 21 228Google Scholar

    [58]

    Cheng Q, Zhang S N, Yu Y W, Zheng X P 2018 Phys. Rev. D 97 103012Google Scholar

    [59]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, van Kerkwijk M H, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, McLaughlin M A, Pennucci T T, Ransom S M, Stairs I H, van Leeuwen J, Verbiest J P W, Whelan D G 2013 Science 340 448Google Scholar

  • [1] 解晓洁, 孙俊松, 秦吉红, 郭怀明. 弯曲应变下六角晶格量子反铁磁体的赝朗道能级. 物理学报, 2024, 73(2): 020202. doi: 10.7498/aps.73.20231231
    [2] 初鹏程, 刘鹤, 杜先斌. 色味锁夸克物质与夸克星. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231649
    [3] 杨玉婷, 钱欣悦, 石礼伟. 二维光子晶体中赝磁场作用下的电磁波操控. 物理学报, 2023, 72(13): 134203. doi: 10.7498/aps.72.20222242
    [4] 王谊农, 初鹏程, 姜瑶瑶, 庞晓迪, 王圣博, 李培新. 基于准粒子模型的原生磁星研究. 物理学报, 2022, 71(22): 222101. doi: 10.7498/aps.71.20220795
    [5] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变. 物理学报, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [6] 卢亚鑫, 马宁. 耦合电磁场对石墨烯量子磁振荡的影响. 物理学报, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [7] 宋冬灵, 明亮, 单昊, 廖天河. 超强磁场下电子朗道能级稳定性及对电子费米能的影响. 物理学报, 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [8] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [9] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级. 物理学报, 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [10] 谷卓伟, 罗浩, 张恒第, 赵士操, 唐小松, 仝延锦, 宋振飞, 赵剑衡, 孙承纬. 炸药柱面内爆磁通量压缩实验技术研究. 物理学报, 2013, 62(17): 170701. doi: 10.7498/aps.62.170701
    [11] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [12] 杨晓阔, 蔡理, 康强, 李政操, 陈祥叶, 赵晓辉. 磁性量子元胞自动机拐角结构的理论模拟和实验. 物理学报, 2012, 61(9): 097503. doi: 10.7498/aps.61.097503
    [13] 王兆军, 吕国梁, 朱春花, 霍文生. 相对论简并电子气体的磁化. 物理学报, 2012, 61(17): 179701. doi: 10.7498/aps.61.179701
    [14] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构. 物理学报, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [15] 王兆军, 吕国梁, 朱春花, 张军. 中子星中简并电子气体的临界磁化. 物理学报, 2011, 60(4): 049702. doi: 10.7498/aps.60.049702
    [16] 刘晶晶. 超强磁场对中子星外壳层核素56Fe,56Co,56Ni,56Mn和56Cr电子俘获过程中微子能量损失的影响. 物理学报, 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [17] 王冠芳, 刘 彬, 傅立斌, 赵 鸿. 非线性三能级体系的绝热朗道-齐纳隧穿. 物理学报, 2007, 56(7): 3733-3738. doi: 10.7498/aps.56.3733
    [18] 张约品, 王现英, 林更琪, 李 震, 李佐宜, 沈德芳, 干福熹. GdFeCo/DyFeCo交换耦合两层薄膜磁化方向转变的研究. 物理学报, 2004, 53(2): 614-619. doi: 10.7498/aps.53.614
    [19] 周云松, 陈金昌, 林多梁. 多层伊辛膜的磁学性质. 物理学报, 2000, 49(12): 2477-2481. doi: 10.7498/aps.49.2477
    [20] 吴建华, 李伯臧, 蒲富恪, 梅良模. 平行与垂直磁化下多层磁膜巨磁电阻与外磁场关系的唯象理论计算. 物理学报, 1994, 43(1): 110-117. doi: 10.7498/aps.43.110
计量
  • 文章访问数:  2123
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-10-12
  • 上网日期:  2022-11-28
  • 刊出日期:  2023-02-05

/

返回文章
返回