搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场中的拓扑绝缘体边缘态性质

王青 盛利

引用本文:
Citation:

磁场中的拓扑绝缘体边缘态性质

王青, 盛利

Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field

Wang Qing, Sheng Li
PDF
导出引用
  • 用数值方法研究了拓扑绝缘体薄膜体系在外加垂直磁场 作用下其边缘态的性质. 磁场的加入通过耦合k+eA, 即Peierls势替换关系和 该作用导致的Zeeman交换场体现在哈密顿量中. 考虑窄条圆环状结构的二维InAs/GaSb/AlSb薄膜量子阱材料, 当其处于拓扑非平庸状态, 即量子自旋霍尔态时, 会出现受时间反演对称性保护的两支简并边缘态, 而在垂直磁场的作用下, 时间反演对称性被破坏, 这时能带将形成一条条的朗道能级, 原来简并的两支边缘态也会分开到朗道能级谱线的两侧, 从电子态密度的空间分布情况则可以看到边缘态分别局域在材料的两个边界. 随着磁场的增大, 位于同一边界上的不同 自旋极化的边缘态将出现分离: 一支仍然局域在边缘, 另一支则随外加磁场的增加而有逐渐演化到材料内部的趋势. 文中还计算了同一边界上的两支边缘态之间的散射, 结果表明由于两个边缘态在空间发生分离, 相互之间的散射被很大的压制, 得到了其散射随磁场增加没有明显变化的结论, 所以磁场并不会增强散射过程, 也没有破坏体拓扑材料的性质, 说明了量子自旋霍尔态在没有时间反演对称的情况下也可以有较强的稳定性.
    The properties of the edge states in the topological insulator InAs/GaSb/AlSb quantum well in the preflence of a perpendicular magnetic field are studied numerically. The effect of the magnetic field is included in our model by adding an on-site Zeeman term and a vector potential to the electron wave vector: k+eA. When the material is in the topologically nontrivial state, a pair of degenerate counter-propagating spin-polarized edge states exist in the bulk band gap on each edge of the sample, which are gapless in the absence of the magnetic field due to the protection of the time reflersal symmetry. #br#Nonzero magnetic field breaks the time reflersal symmetry, and leads to Landau levels in the electron energy spectrum. However, one can still find a pair of counter-propagating spin-polarized edge states in the bulk energy gap near each sample boundary.The edge states are gapped, and their distributions relative the sample edge depend on the strength of the magnetic field. With the increase of the magnetic field, one edge state remains located near the sample boundary, but the other tends to evolve into the bulk gradually. Furthermore, we study the scattering between the two edge states caused by impurities. We show that the scattering rate is suppressed because of the spatial separation of two edge states, and shows no significant enhancement when the magnetic field increases, which suggests that even though the time reflersal symmetry is broken, the quantum spin Hall state remains to be relatively robust.
    • 基金项目: 国家科技部重点基础研究发展计划(批准号: 2015CB921202, 2014CB921103)和 国家自然科学基金(批准号:11225420)资助课题.
    • Funds: Project supported by the State Key Program for Basic Researches of China (Grants Nos. 2015CB921202, 2014CB921103), and the National Natural Science Foundation of China (Grants No. 11225420).
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [3]

    Haldane F D M 1988 Phys. Rev. Lett. 45 61

    [4]

    C L Kane, E J Mele 2005 Phys. Rev. Lett. 95 226801

    [5]

    Bernevig B A, Mele E J 2005 Phys. Rev. Lett. 96 106802

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Wu C, Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106401

    [9]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [10]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [11]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [12]

    Sheng L, Sheng D N, Ting C S, Haldane F D M 2005 Phys. Rev. Lett. 95 136602

    [13]

    Sheng D N, Weng Z Y, Sheng L, Haldane F D M 2006 Phys. Rev. Lett. 97 036808

    [14]

    Prodan E 2009 Phys. Rev. B 80 125327

    [15]

    Li H C, Sheng L, Sheng D N, Xing D Y 2010 Phys. Rev. B 82 165104

    [16]

    Prodan E 2010 New J. Phys. 12 065003

    [17]

    Du L J, Knez I, Sullivan G, Du R R 2013 arXiv:1306.1925. http:arxiv.orgabs1306.1925

    [18]

    Liu C X, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601

    [19]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802

    [20]

    Yang Y, Xu Z, Sheng L, Wang B G, Xing D Y 2011 Phys. Rev. Lett. 107 066602

    [21]

    Li H C, Sheng L, Xing D Y 2012 Phys. Rev. Lett. 108 196806

    [22]

    Li H C, Sheng L, Shen R, Wang B G, Sheng D N, Xing D Y 2013 Phys. Rev. Lett. 110 266802

  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [3]

    Haldane F D M 1988 Phys. Rev. Lett. 45 61

    [4]

    C L Kane, E J Mele 2005 Phys. Rev. Lett. 95 226801

    [5]

    Bernevig B A, Mele E J 2005 Phys. Rev. Lett. 96 106802

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Wu C, Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106401

    [9]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [10]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [11]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [12]

    Sheng L, Sheng D N, Ting C S, Haldane F D M 2005 Phys. Rev. Lett. 95 136602

    [13]

    Sheng D N, Weng Z Y, Sheng L, Haldane F D M 2006 Phys. Rev. Lett. 97 036808

    [14]

    Prodan E 2009 Phys. Rev. B 80 125327

    [15]

    Li H C, Sheng L, Sheng D N, Xing D Y 2010 Phys. Rev. B 82 165104

    [16]

    Prodan E 2010 New J. Phys. 12 065003

    [17]

    Du L J, Knez I, Sullivan G, Du R R 2013 arXiv:1306.1925. http:arxiv.orgabs1306.1925

    [18]

    Liu C X, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601

    [19]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802

    [20]

    Yang Y, Xu Z, Sheng L, Wang B G, Xing D Y 2011 Phys. Rev. Lett. 107 066602

    [21]

    Li H C, Sheng L, Xing D Y 2012 Phys. Rev. Lett. 108 196806

    [22]

    Li H C, Sheng L, Shen R, Wang B G, Sheng D N, Xing D Y 2013 Phys. Rev. Lett. 110 266802

  • [1] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240871
    [2] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [3] 黄月蕾, 单寅飞, 杜灵杰, 杜瑞瑞. 拓扑激子绝缘体的实验进展. 物理学报, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [4] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [5] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性. 物理学报, 2023, 72(24): 247301. doi: 10.7498/aps.72.20231286
    [6] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [7] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [8] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展. 物理学报, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [9] 夏群, 邓文基. 体态和边缘态的电导峰. 物理学报, 2022, 71(13): 137301. doi: 10.7498/aps.71.20212424
    [10] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [11] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [12] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [13] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [14] 卢曼昕, 邓文基. 一维二元复式晶格的拓扑不变量与边缘态. 物理学报, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [15] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [16] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [17] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级. 物理学报, 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [18] 邓伟胤, 朱瑞, 邓文基. Zigzag型边界石墨烯纳米带的电子态. 物理学报, 2013, 62(6): 067301. doi: 10.7498/aps.62.067301
    [19] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [20] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究. 物理学报, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
计量
  • 文章访问数:  9879
  • PDF下载量:  1182
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-02-22
  • 刊出日期:  2015-05-05

/

返回文章
返回