搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子

王航天 赵海慧 温良恭 吴晓君 聂天晓 赵巍胜

引用本文:
Citation:

高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子

王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜

High-performance THz emission: From topological insulator to topological spintronics

Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng
PDF
HTML
导出引用
  • 利用飞秒激光脉冲激发铁磁/非磁异质结构有望实现高效太赫兹辐射, 从而打破制约太赫兹技术快速发展的瓶颈. 拓扑绝缘体是一种新型二维材料, 其自旋霍尔角远大于重金属材料, 可以与铁磁层结合构成自旋太赫兹发射器. 为了研究拓扑绝缘体/非磁异质结中的太赫兹产生和调控机理, 本综述从飞秒激光激发的超快光电流响应入手, 结合拓扑绝缘体的晶体结构与电子结构, 分析了拓扑绝缘体薄膜中的太赫兹发射机理, 揭示了不同非线性效应产生的超快光电流随外界条件的依赖关系, 证实了使用多种手段调控拓扑绝缘体出射非线性太赫兹辐射的可能性; 以铁磁/重金属异质结为例, 探究了自旋太赫兹发射器的优势与调控方法. 结合这两种发射机理, 通过非线性太赫兹与自旋太赫兹的合成作用, 可以实现在拓扑绝缘体/铁磁异质结中偏振可调谐的太赫兹发射.
    Ferromagnet/nonmagnet (FM/NM) heterostructure under the excitation of femtosecond laser has proved to be a potential candidate for high-efficiency terahertz (THz) emission. Topological insulator (TI) is a novel two-dimensional (2D) material with a strong spin-orbital coupling, which endows this material with an extremely large spin-Hall angle. Thus, TI appears to be an attractive alternative to achieving higher-performance spintronic THz emitter when integrated with ferromagnetic material. In this paper, we discuss the ultrafast photocurrent response mechanism in TI film on the basis of the analysis of its crystal and band structures. The discussion of the mechanism reveals a relationship between THz radiation and external conditions, such as crystal orientation, polarized direction and chirality of the laser. Furthermore, we review the spintronic THz emission and manipulation in FM/NM heterostructure. The disclosed relationship between THz radiation and magnetization directions enables an effective control of the THz polarization by optimizing the system, such as by applying twisted magnetic field or fabricating cascade emitters. After integration, the FM/TI heterostructure presents a high efficiency and easy operation in THz radiation. This high-performance topological spintronic THz emitter presents a potential for the achievement of arbitrary polarization-shaping terahertz radiation.
      通信作者: 聂天晓, nietianxiao@buaa.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0407602)、国家自然科学基金(批准号: 61774013, 11644004)和国家科技重大专项(批准号: 2017ZX01032101)资助的课题
      Corresponding author: Nie Tian-Xiao, nietianxiao@buaa.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0407602), the National Natural Science Foundation of China (Grant Nos. 61774013, 11644004), and the National Key Technology Program of China (Grant No. 2017ZX01032101)
    [1]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422Google Scholar

    [2]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [3]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [4]

    Sirtori C 2002 Nature 417 132Google Scholar

    [5]

    Zhang B, He T, Shen J, Hou Y, Hu Y, Zang M, Chen T, Feng S, Teng F, Qin L 2014 Opt. Lett. 39 6110Google Scholar

    [6]

    Kawase K, Sato M, Taniuchi T, Ito H 1996 Appl. Phys. Lett. 68 2483Google Scholar

    [7]

    Winnewisser C, Jepsen P U, Schall M, Schyja V, Helm H 1997 Appl. Phys. Lett. 70 3069Google Scholar

    [8]

    Han P Y, Tani M, Pan F, Zhang X C 2000 Opt. Lett. 25 675Google Scholar

    [9]

    Kawase K, Hatanaka T, Takahashi H, Nakamura K, Taniuchi T, Ito H 2000 Opt. Lett. 25 1714Google Scholar

    [10]

    Nahata A, Weling A S, Heinz T F 1996 Appl. Phys. Lett. 69 2321Google Scholar

    [11]

    Matsuura S, Tani M, Sakai K 1997 Appl. Phys. Lett. 70 559Google Scholar

    [12]

    施卫, 闫志巾 2015 物理学报 64 228702Google Scholar

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702Google Scholar

    [13]

    Kumar N, Hendrikx R W A, Adam A J L, Planken P C M 2015 Opt. Express 23 14252Google Scholar

    [14]

    Gorelov S, Mashkovich E, Tsarev M, Bakunov M 2013 Phys. Rev. B 88 220411Google Scholar

    [15]

    Mikhaylovskiy R, Hendry E, Kruglyak V, Pisarev R, Rasing T, Kimel A 2014 Phys. Rev. B 90 184405Google Scholar

    [16]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [17]

    Hilton D J, Averitt R D, Meserole C A, Fisher G L, Funk D J, Thompson J D, Taylor A J 2004 Opt. Lett. 29 1805Google Scholar

    [18]

    Shen J, Fan X, Chen Z, DeCamp M F, Zhang H, Xiao J Q 2012 Appl. Phys. Lett. 101 072401Google Scholar

    [19]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [20]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [21]

    Wang B, Shan S, Wu X, Wang C, Pandey C, Nie T, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [22]

    Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [23]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [24]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [25]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306Google Scholar

    [26]

    Roy R 2009 Phys. Rev. B 79 195322Google Scholar

    [27]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [28]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J 2009 Nat. Phys. 5 398Google Scholar

    [29]

    Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nature 460 1101Google Scholar

    [30]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [31]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [32]

    He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [33]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [34]

    Li Y, Edmonds K W, Liu X, Zheng H, Wang K 2019 Adv. Quantum Technol. 2 1800052Google Scholar

    [35]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [36]

    Ganichev S D, Ketterl H, Prettl W, Ivchenko E L, Vorobjev L E 2000 Appl. Phys. Lett. 77 3146Google Scholar

    [37]

    Ganichev S D, Prettl W 2003 J. Phys.: Condens. Matter 15 R935Google Scholar

    [38]

    Liu C X, Qi X L, Zhang H, Dai X, Fang Z, Zhang S C 2010 Phys. Rev. B 82 045122Google Scholar

    [39]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [40]

    Che X, Murata K, Pan L, He Q L, Yu G, Shao Q, Yin G, Deng P, Fan Y, Ma B, Liang X, Zhang B, Han X, Bi L, Yang Q H, Zhang H, Wang K L 2018 ACS Nano 12 5042Google Scholar

    [41]

    He L, Kou X, Wang K L 2013 Phys. Status Solidi RRL 7 50Google Scholar

    [42]

    Hamh S Y, Park S H, Han J, Jeon J H, Kahng S J, Kim S, Choi S H, Bansal N, Oh S, Park J, Kim J S, Kim J M, Noh D Y, Lee J S 2015 Nanoscale Res. Lett. 10 1Google Scholar

    [43]

    Pan Z H, Fedorov A, Gardner D, Lee Y S, Chu S, Valla T 2012 Phys. Rev. Lett. 108 187001Google Scholar

    [44]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [45]

    Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Rojas-Sánchez J C, Mangin S, Wang K L 2019 Adv. Mater 31 1901681Google Scholar

    [46]

    Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar

    [47]

    Zhu L G, Kubera B, Mak K F, Shan J 2015 Sci. Rep. 5 10308Google Scholar

    [48]

    Hamh S Y, Park S H, Jerng S K, Jeon J H, Chun S H, Lee J S 2016 Phys. Rev. B 94 161405Google Scholar

    [49]

    Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar

    [50]

    Liu K, Xu J, Yuan T, Zhang X C 2006 Phys. Rev. B 73 155330Google Scholar

    [51]

    Seifert P, Vaklinova K, Kern K, Burghard M, Holleitner A 2017 Nano Lett. 17 973Google Scholar

    [52]

    Duan J, Tang N, He X, Yan Y, Zhang S, Qin X, Wang X, Yang X, Xu F, Chen Y 2014 Sci. Rep. 4 4889Google Scholar

    [53]

    Kastl C, Karnetzky C, Karl H, Holleitner A W 2015 Nat. Commun. 6 6617Google Scholar

    [54]

    McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik N 2011 Nat. Nanotechnol. 7 96Google Scholar

    [55]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Münzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [56]

    Tu C M, Chen Y C, Huang P, Chuang P Y, Lin M Y, Cheng C M, Lin J Y, Juang J Y, Wu K H, Huang J C A, Pong W F, Kobayashi T, Luo C W 2017 Phys. Rev. B 96 195407Google Scholar

    [57]

    Belinicher V I, Sturman B I 1980 Phys.-Usp. 23 199Google Scholar

    [58]

    Junck A, Refael G, von Oppen F 2013 Phys. Rev. B 88 075144Google Scholar

    [59]

    Maysonnave J, Huppert S, Wang F, Maero S, Berger C, de Heer W, Norris T B, de Vaulchier L A, Dhillon S, Tignon J, Ferreira R, Mangeney J 2014 Nano Lett. 14 5797Google Scholar

    [60]

    Obraztsov P A, Kaplas T, Garnov S V, Kuwata-Gonokami M, Obraztsov A N, Svirko Y P 2014 Sci. Rep. 4 4007Google Scholar

    [61]

    Karch J, Olbrich P, Schmalzbauer M, et al. 2010 Phys. Rev. Lett. 105 227402Google Scholar

    [62]

    Bahk Y M, Ramakrishnan G, Choi J, Song H, Choi G, Kim Y H, Ahn K J, Kim D S, Planken P C M 2014 ACS Nano 8 9089Google Scholar

    [63]

    Hamh S Y, Park S H, Han J, Jeon J H, Kahng S J, Kim S, Choi S H, Bansal N, Oh S, Park J 2015 Nanoscale Res. Lett. 10 489Google Scholar

    [64]

    Tu C M, Yeh T T, Tzeng W Y, Chen Y R, Chen H J, Ku S A, Luo C W, Lin J Y, Wu K H, Juang J Y 2015 Sci. Rep. 5 14128Google Scholar

    [65]

    Hosur P 2011 Phys. Rev. B 83 035309Google Scholar

    [66]

    Olbrich P, Golub L, Herrmann T, et al. 2014 Phys. Rev. Lett. 113 096601Google Scholar

    [67]

    Gao Y, Kaushik S, Philip E, Li Z, Qin Y, Liu Y, Zhang W, Su Y, Chen X, Weng H 2020 Nat. Commun. 11 720Google Scholar

    [68]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater 30 1802356Google Scholar

    [69]

    Bosu S, Sakuraba Y, Uchida KI, Saito K, Ota T, Saitoh E, Takanashi K 2011 Phys. Rev. B 83 224401Google Scholar

    [70]

    Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P, Myers R C 2010 Nat. Mater. 9 898Google Scholar

    [71]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [72]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601Google Scholar

    [73]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [74]

    Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S 2018 Nat. Commun. 9 1Google Scholar

    [75]

    Rudolf D, La-O-Vorakiat C, Battiato M, et al. 2012 Nat. Commun. 3 1037Google Scholar

    [76]

    Eschenlohr A, Battiato M, Maldonado P, Pontius N, Kachel T, Holldack K, Mitzner R, Föhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332Google Scholar

    [77]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [78]

    Bennemann K H 2004 J. Phys.: Condens. Matter 16 R995Google Scholar

    [79]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [80]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [81]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [82]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv.Mater 29 1603031Google Scholar

    [83]

    Zhou X, Song B, Chen X, You Y, Ruan S, Bai H, Zhang W, Ma G, Yao J, Pan F 2019 Appl. Phys. Lett. 115 182402Google Scholar

    [84]

    Hibberd M, Lake D, Johansson N, Thomson T, Jamison S, Graham D 2019 Appl. Phys. Lett. 114 031101Google Scholar

    [85]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [86]

    Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [87]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [88]

    Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L 2017 Nat. Commun. 8 1Google Scholar

    [89]

    Kubota H, Fukushima A, Yakushiji K, Nagahama T, Yuasa S, Ando K, Maehara H, Nagamine Y, Tsunekawa K, Djayaprawira D D 2008 Nat. Phys. 4 37Google Scholar

    [90]

    Liu L, Moriyama T, Ralph D, Buhrman R 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [91]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [92]

    Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L T, Montazeri M 2014 Nat. Mater. 13 699Google Scholar

    [93]

    Kekatpure R D, Brongersma M L 2008 Nano Lett. 8 3787Google Scholar

    [94]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q, Lu L 2010 Phys. Rev. Lett. 105 176602Google Scholar

    [95]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2015 Sci. Rep. 5 8452Google Scholar

    [96]

    Souma S, Eto K, Nomura M, Nakayama K, Sato T, Takahashi T, Segawa K, Ando Y 2012 Phys. Rev. Lett. 108 116801Google Scholar

    [97]

    Wang Z, Lin T, Wei P, Liu X, Dumas R, Liu K, Shi J 2010 Appl. Phys. Lett. 97 159903Google Scholar

    [98]

    Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C, Richardella A, Zhang H, Awschalom D D, Liu C X, Samarth N 2017 Nat. Commun. 8 1037Google Scholar

    [99]

    Luo C W, Chen H J, Tu C M, Lee C C, Ku S A, Tzeng W Y, Yeh T T, Chiang M C, Wang H J, Chu W C 2013 Adv. Opt. Mater. 1 804Google Scholar

  • 图 1  Bi2Se3的晶体结构 (a) 三维晶体结构, $ {{t}}_{{1, 2}, 3} $代表晶胞的基矢, 红色框标注的是Bi2Se3的QL层; (b) Bi2Se3的布里渊区; (c) 在xy平面内, 三角形的晶格结构有A, B, C三种可能的结构[38]

    Fig. 1.  The crystal structure of Bi2Se3: (a) 3D schematic of the structure, where $ {{t}}_{{1, 2}, 3} $ present the primitive lattice vector; (b) Brillioun zone of Bi2Se3; (c) the xy-plane triangle lattice has three possible positions A, B and C[38].

    图 2  ARPES能谱测量的Bi2Se3的表面能带结构[43]

    Fig. 2.  ARPES measurements of surface electronic band of Bi2Se3[43].

    图 3  线偏振激光激发下拓扑绝缘体中的超快光电流效应 (a) 分离出的非线性效应产生的太赫兹电场随方位角的变化; (b) 不同效应产生的太赫兹分量在合成太赫兹辐射中的占比[49]

    Fig. 3.  Separation of the photo-currents in topological insulator excited by linear femtosecond laser pulse: (a) The derived terahertz signals due to nonlinear currents as a function of azimuthal angle; (b) the extracted terahertz electric field generated by different effects[49].

    图 4  (a), (b) 样品方位角$ \phi =30^ \circ $, 在左旋和右旋圆极化光激发下, 时域和频域下Bi2Se3产生的太赫兹信号; (c) 太赫兹幅值随激光偏振态的变化关系, 其中蓝色曲线代表时域信号, 黄色曲线代表频域信号[48]

    Fig. 4.  (a), (b) THz signals emitted from Bi2Se3 in time and frequency domains under illumination of left- and right- handed circularly polarized light where the azimuth $ \phi =30^ \circ $; (c) THz-wave amplitudes as a function of the polarity of pump laser in time (blue curves) and frequency domains (yellow curves)[48].

    图 5  (a) Seifert等[74]使用的YIG/Pt异质结构; (b) 在YIG/Pt中插入1.9 nm的铜, 由于自旋注入被阻隔, 太赫兹信号减弱[74]; (c) Wu等[82]使用的W/Co异质结构; (d) W/Co异质结构的太赫兹发射强度接近于500 μm的ZnTe晶体[82]

    Fig. 5.  (a) The YIG/Pt heterostructure used by Seifert. et al.[74]; (b) after 1.9 nm Cu insertion, the THz field intensity deteriorates because the spin injection is impaired[74]; (c) the Co/W heterostructure used by Wu et al.[82]; (d) the THz waves emitted from Co/W have a peak intensity exceeding that of ZnTe crystals[82].

    图 6  (a) 在异质结上施加手性相反的螺旋外磁场可以改变出射太赫兹波的手性; (b) 图(a)的利萨如曲线, 其中$ {\sigma }^{+} $$ {\sigma }^{-} $分别代表左旋与右旋极化的太赫兹信号[85]; (c), (d) Chen等[22]设计的级联太赫兹发射器, 两级发射器铁磁层的磁化方向与入射光方向两两正交, 通过控制出射太赫兹的相位差和振幅, 可以在时域获得合成的圆偏振信号; (e), (f) Wang等[21]使用的双抽运自旋太赫兹发射器, 通过改变脉冲时延可以调控出射太赫兹的时域信号

    Fig. 6.  (a) Manipulation of the terahertz chirality by changing the twisted magnetic field distribution; (b) the Lissajous curves of the THz signals of (a), where $ {\sigma }^{+} $ and $ {\sigma }^{-} $ present the signals with left-hand and right-hand polarity[85]; (c), (d) the cascade spintronic terahertz emitter designed by Chen et al.[22], a circularly polarized terahertz waves could be obtained by controlling the phase difference between two stage terahertz and their amplitude; (e), (f) dual-pulses induced terahertz emitter reported by Wang et al.[21], the frequency could be manipulated by changing the delay time between two pump laser pulses.

    图 7  (a) ST-FMR测试示意图, 使用信号发生器(SG)给样品施加一个射频电流, 通过测试样品的电压信号计算拓扑绝缘体的自旋霍尔角; (b) 异质结中的磁矩进动过程[88]

    Fig. 7.  (a) The schematic diagram of the ST-FMR measurement setup, an RF current from a signal generator (SG) is injected into the devices; (b) magnetization movements in the ST-FMR measurements[88].

    图 8  (a) Bi2Se3/Co异质结构示意图; (b) 用飞秒激光分别激发Bi2Se3/Co, Co, Bi2Se3产生的太赫兹信号; (c) 改变入射方向与面内磁场方向后, 异质结发射的太赫兹极性反转[68]

    Fig. 8.  (a) The schematic diagram of the Bi2Se3/Co heterostructure; (b) THz waveforms generated from Bi2Se3/Co, Co and Bi2Se3; (c) THz waveforms emitted from the heterostructure measured with front and back sample excitation and reversed magnetic field[68].

    图 9  (a) Pan等人制备的顶电极器件, 其中Al2O3作为介电层, ITO作为电极材料; (b) (BixSb1–x)2Se3薄膜的光电流与纵向电阻随电压的变化情况[98]

    Fig. 9.  (a) The Schematic diagram of the top-gate device prepared by Pan et al, where the Al2O3 is dielectric layer while the ITO serves as top gate material; (b) the gate-dependent longitudinal resistance and nonlinear current in (BixSb1–x)2Se3 film[98].

    表 1  拓扑绝缘体中的超快光电流与晶体取向ϕ, 入射角θ, 激光偏振态的依赖关系[56]

    Table 1.  The details of the dependences of CPGE, LPGE, PDE, and OR on $ \phi $, $ \theta $, and $ \alpha $[56].

    非线性效应晶体方向$ \phi $入射角($ \theta \to -\theta $)1/4波片转角$ \alpha $
    CPGE来源于表面态极性反转2$ \alpha $-周期
    与$ \phi $无关$ \mathrm{s}\mathrm{i}\mathrm{n}\left(2\alpha \right) $
    LPGE来源于表面态极性反转4$ \alpha $-周期
    $ \phi $依赖$ \mathrm{s}\mathrm{i}\mathrm{n}\left(4\alpha \right) $
    PDE$ \phi $依赖极性反转4$ \alpha $-周期
    $\cos4\alpha$
    OR$ \phi $依赖极性不反转4$ \alpha $-周期
    $ \mathrm{c}\mathrm{o}\mathrm{s}\left(4\alpha \right) $
    下载: 导出CSV

    表 2  拓扑绝缘体与几种重金属材料的自旋霍尔角[35]

    Table 2.  Spin Hall angles of several topological insulators and common heavy metals[35]

    Material$ {\theta }_{\mathrm{S}\mathrm{H}} $
    Ta0.15
    W0.40
    Pt0.08
    Bi2Se32.00—3.50
    BixSe1–x18.80
    BixSb1–x52.00
    下载: 导出CSV

    表 3  不同载流子浓度下Bi2Se3辐射的太赫兹峰值强度[99]

    Table 3.  Carrier concentration and THz peak amplitude for Bi2Se3 films[99]

    编号材料载流子浓度/
    1018 cm–3
    太赫兹峰值/
    mV·cm–1
    1Bi2Se3–75.51.24
    2Bi2Se3–34.67.75
    3Bi2Se3–315.27
    4Bi2Se3–15.611.10
    5Cu0.02Bi2Se3–3.6654.39
    6Cu0.08Bi2Se3–4.2355.77
    7Cu0.1Bi2Se3–1.9639.37
    8Cu0.125Bi2Se3–1.1752.32
    下载: 导出CSV
  • [1]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422Google Scholar

    [2]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [3]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [4]

    Sirtori C 2002 Nature 417 132Google Scholar

    [5]

    Zhang B, He T, Shen J, Hou Y, Hu Y, Zang M, Chen T, Feng S, Teng F, Qin L 2014 Opt. Lett. 39 6110Google Scholar

    [6]

    Kawase K, Sato M, Taniuchi T, Ito H 1996 Appl. Phys. Lett. 68 2483Google Scholar

    [7]

    Winnewisser C, Jepsen P U, Schall M, Schyja V, Helm H 1997 Appl. Phys. Lett. 70 3069Google Scholar

    [8]

    Han P Y, Tani M, Pan F, Zhang X C 2000 Opt. Lett. 25 675Google Scholar

    [9]

    Kawase K, Hatanaka T, Takahashi H, Nakamura K, Taniuchi T, Ito H 2000 Opt. Lett. 25 1714Google Scholar

    [10]

    Nahata A, Weling A S, Heinz T F 1996 Appl. Phys. Lett. 69 2321Google Scholar

    [11]

    Matsuura S, Tani M, Sakai K 1997 Appl. Phys. Lett. 70 559Google Scholar

    [12]

    施卫, 闫志巾 2015 物理学报 64 228702Google Scholar

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702Google Scholar

    [13]

    Kumar N, Hendrikx R W A, Adam A J L, Planken P C M 2015 Opt. Express 23 14252Google Scholar

    [14]

    Gorelov S, Mashkovich E, Tsarev M, Bakunov M 2013 Phys. Rev. B 88 220411Google Scholar

    [15]

    Mikhaylovskiy R, Hendry E, Kruglyak V, Pisarev R, Rasing T, Kimel A 2014 Phys. Rev. B 90 184405Google Scholar

    [16]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [17]

    Hilton D J, Averitt R D, Meserole C A, Fisher G L, Funk D J, Thompson J D, Taylor A J 2004 Opt. Lett. 29 1805Google Scholar

    [18]

    Shen J, Fan X, Chen Z, DeCamp M F, Zhang H, Xiao J Q 2012 Appl. Phys. Lett. 101 072401Google Scholar

    [19]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [20]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [21]

    Wang B, Shan S, Wu X, Wang C, Pandey C, Nie T, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [22]

    Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [23]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [24]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [25]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306Google Scholar

    [26]

    Roy R 2009 Phys. Rev. B 79 195322Google Scholar

    [27]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [28]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J 2009 Nat. Phys. 5 398Google Scholar

    [29]

    Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nature 460 1101Google Scholar

    [30]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [31]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [32]

    He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [33]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [34]

    Li Y, Edmonds K W, Liu X, Zheng H, Wang K 2019 Adv. Quantum Technol. 2 1800052Google Scholar

    [35]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [36]

    Ganichev S D, Ketterl H, Prettl W, Ivchenko E L, Vorobjev L E 2000 Appl. Phys. Lett. 77 3146Google Scholar

    [37]

    Ganichev S D, Prettl W 2003 J. Phys.: Condens. Matter 15 R935Google Scholar

    [38]

    Liu C X, Qi X L, Zhang H, Dai X, Fang Z, Zhang S C 2010 Phys. Rev. B 82 045122Google Scholar

    [39]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [40]

    Che X, Murata K, Pan L, He Q L, Yu G, Shao Q, Yin G, Deng P, Fan Y, Ma B, Liang X, Zhang B, Han X, Bi L, Yang Q H, Zhang H, Wang K L 2018 ACS Nano 12 5042Google Scholar

    [41]

    He L, Kou X, Wang K L 2013 Phys. Status Solidi RRL 7 50Google Scholar

    [42]

    Hamh S Y, Park S H, Han J, Jeon J H, Kahng S J, Kim S, Choi S H, Bansal N, Oh S, Park J, Kim J S, Kim J M, Noh D Y, Lee J S 2015 Nanoscale Res. Lett. 10 1Google Scholar

    [43]

    Pan Z H, Fedorov A, Gardner D, Lee Y S, Chu S, Valla T 2012 Phys. Rev. Lett. 108 187001Google Scholar

    [44]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [45]

    Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Rojas-Sánchez J C, Mangin S, Wang K L 2019 Adv. Mater 31 1901681Google Scholar

    [46]

    Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar

    [47]

    Zhu L G, Kubera B, Mak K F, Shan J 2015 Sci. Rep. 5 10308Google Scholar

    [48]

    Hamh S Y, Park S H, Jerng S K, Jeon J H, Chun S H, Lee J S 2016 Phys. Rev. B 94 161405Google Scholar

    [49]

    Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar

    [50]

    Liu K, Xu J, Yuan T, Zhang X C 2006 Phys. Rev. B 73 155330Google Scholar

    [51]

    Seifert P, Vaklinova K, Kern K, Burghard M, Holleitner A 2017 Nano Lett. 17 973Google Scholar

    [52]

    Duan J, Tang N, He X, Yan Y, Zhang S, Qin X, Wang X, Yang X, Xu F, Chen Y 2014 Sci. Rep. 4 4889Google Scholar

    [53]

    Kastl C, Karnetzky C, Karl H, Holleitner A W 2015 Nat. Commun. 6 6617Google Scholar

    [54]

    McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik N 2011 Nat. Nanotechnol. 7 96Google Scholar

    [55]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Münzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [56]

    Tu C M, Chen Y C, Huang P, Chuang P Y, Lin M Y, Cheng C M, Lin J Y, Juang J Y, Wu K H, Huang J C A, Pong W F, Kobayashi T, Luo C W 2017 Phys. Rev. B 96 195407Google Scholar

    [57]

    Belinicher V I, Sturman B I 1980 Phys.-Usp. 23 199Google Scholar

    [58]

    Junck A, Refael G, von Oppen F 2013 Phys. Rev. B 88 075144Google Scholar

    [59]

    Maysonnave J, Huppert S, Wang F, Maero S, Berger C, de Heer W, Norris T B, de Vaulchier L A, Dhillon S, Tignon J, Ferreira R, Mangeney J 2014 Nano Lett. 14 5797Google Scholar

    [60]

    Obraztsov P A, Kaplas T, Garnov S V, Kuwata-Gonokami M, Obraztsov A N, Svirko Y P 2014 Sci. Rep. 4 4007Google Scholar

    [61]

    Karch J, Olbrich P, Schmalzbauer M, et al. 2010 Phys. Rev. Lett. 105 227402Google Scholar

    [62]

    Bahk Y M, Ramakrishnan G, Choi J, Song H, Choi G, Kim Y H, Ahn K J, Kim D S, Planken P C M 2014 ACS Nano 8 9089Google Scholar

    [63]

    Hamh S Y, Park S H, Han J, Jeon J H, Kahng S J, Kim S, Choi S H, Bansal N, Oh S, Park J 2015 Nanoscale Res. Lett. 10 489Google Scholar

    [64]

    Tu C M, Yeh T T, Tzeng W Y, Chen Y R, Chen H J, Ku S A, Luo C W, Lin J Y, Wu K H, Juang J Y 2015 Sci. Rep. 5 14128Google Scholar

    [65]

    Hosur P 2011 Phys. Rev. B 83 035309Google Scholar

    [66]

    Olbrich P, Golub L, Herrmann T, et al. 2014 Phys. Rev. Lett. 113 096601Google Scholar

    [67]

    Gao Y, Kaushik S, Philip E, Li Z, Qin Y, Liu Y, Zhang W, Su Y, Chen X, Weng H 2020 Nat. Commun. 11 720Google Scholar

    [68]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater 30 1802356Google Scholar

    [69]

    Bosu S, Sakuraba Y, Uchida KI, Saito K, Ota T, Saitoh E, Takanashi K 2011 Phys. Rev. B 83 224401Google Scholar

    [70]

    Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P, Myers R C 2010 Nat. Mater. 9 898Google Scholar

    [71]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [72]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601Google Scholar

    [73]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [74]

    Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S 2018 Nat. Commun. 9 1Google Scholar

    [75]

    Rudolf D, La-O-Vorakiat C, Battiato M, et al. 2012 Nat. Commun. 3 1037Google Scholar

    [76]

    Eschenlohr A, Battiato M, Maldonado P, Pontius N, Kachel T, Holldack K, Mitzner R, Föhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332Google Scholar

    [77]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [78]

    Bennemann K H 2004 J. Phys.: Condens. Matter 16 R995Google Scholar

    [79]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [80]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [81]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [82]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv.Mater 29 1603031Google Scholar

    [83]

    Zhou X, Song B, Chen X, You Y, Ruan S, Bai H, Zhang W, Ma G, Yao J, Pan F 2019 Appl. Phys. Lett. 115 182402Google Scholar

    [84]

    Hibberd M, Lake D, Johansson N, Thomson T, Jamison S, Graham D 2019 Appl. Phys. Lett. 114 031101Google Scholar

    [85]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [86]

    Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [87]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [88]

    Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L 2017 Nat. Commun. 8 1Google Scholar

    [89]

    Kubota H, Fukushima A, Yakushiji K, Nagahama T, Yuasa S, Ando K, Maehara H, Nagamine Y, Tsunekawa K, Djayaprawira D D 2008 Nat. Phys. 4 37Google Scholar

    [90]

    Liu L, Moriyama T, Ralph D, Buhrman R 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [91]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [92]

    Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L T, Montazeri M 2014 Nat. Mater. 13 699Google Scholar

    [93]

    Kekatpure R D, Brongersma M L 2008 Nano Lett. 8 3787Google Scholar

    [94]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q, Lu L 2010 Phys. Rev. Lett. 105 176602Google Scholar

    [95]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2015 Sci. Rep. 5 8452Google Scholar

    [96]

    Souma S, Eto K, Nomura M, Nakayama K, Sato T, Takahashi T, Segawa K, Ando Y 2012 Phys. Rev. Lett. 108 116801Google Scholar

    [97]

    Wang Z, Lin T, Wei P, Liu X, Dumas R, Liu K, Shi J 2010 Appl. Phys. Lett. 97 159903Google Scholar

    [98]

    Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C, Richardella A, Zhang H, Awschalom D D, Liu C X, Samarth N 2017 Nat. Commun. 8 1037Google Scholar

    [99]

    Luo C W, Chen H J, Tu C M, Lee C C, Ku S A, Tzeng W Y, Yeh T T, Chiang M C, Wang H J, Chu W C 2013 Adv. Opt. Mater. 1 804Google Scholar

  • [1] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [2] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展. 物理学报, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [3] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [4] 许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜. 自旋电子太赫兹源研究进展. 物理学报, 2020, 69(20): 200703. doi: 10.7498/aps.69.20200623
    [5] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [6] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [7] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [8] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [9] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [10] 左剑, 张亮亮, 巩辰, 张存林. 太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展. 物理学报, 2016, 65(1): 010704. doi: 10.7498/aps.65.010704
    [11] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [12] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [13] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [14] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [15] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [16] 黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩. 磷化镓高功率太赫兹共线差频源的研究. 物理学报, 2013, 62(12): 120704. doi: 10.7498/aps.62.120704
    [17] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [18] 马凤英, 陈明, 刘晓莉, 刘建立, 池泉, 杜艳丽, 郭茂田, 袁斌. 太赫兹波段微腔器件的设计及其特性研究. 物理学报, 2012, 61(11): 114205. doi: 10.7498/aps.61.114205
    [19] 刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲. 基于场致发射阴极阵列的太赫兹源的物理机理研究. 物理学报, 2012, 61(12): 127901. doi: 10.7498/aps.61.127901
    [20] 高鹏, Booske John H., 杨中海, 李斌, 徐立, 何俊, 宫玉彬, 田忠. 太赫兹折叠波导行波管再生反馈振荡器非线性理论与模拟. 物理学报, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
计量
  • 文章访问数:  12401
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-06-04
  • 上网日期:  2020-06-15
  • 刊出日期:  2020-10-20

/

返回文章
返回