搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁控溅射法生长Bi2Te3/CoFeB双层异质结太赫兹发射

张帆 许涌 柳洋 程厚义 张晓强 杜寅昌 吴晓君 赵巍胜

引用本文:
Citation:

磁控溅射法生长Bi2Te3/CoFeB双层异质结太赫兹发射

张帆, 许涌, 柳洋, 程厚义, 张晓强, 杜寅昌, 吴晓君, 赵巍胜

Terahertz emission generated from Bi2Te3/CoFeB heterostructures grown by magnetron sputtering

Zhang Fan, Xu Yong, Liu Yang, Cheng Hou-Yi, Zhang Xiao-Qiang, Du Yin-Chang, Wu Xiao-Jun, Zhao Wei-Sheng
PDF
HTML
导出引用
  • 自旋太赫兹源作为一种新型太赫兹辐射源, 以其高效率、超宽带、低成本、易集成等优点已成为太赫兹科学与应用领域的研究热点. 本实验报道了晶圆级磁控溅射生长的多晶拓扑绝缘体Bi2Te3和铁磁体CoFeB双层异质结纳米薄膜发射太赫兹电磁波, 并对太赫兹辐射特性进行了深入而系统的实验研究. 在飞秒激光放大级脉冲作用下, 该异质结呈现出高效率的太赫兹发射, 且辐射偏振可通过外加磁场方向控制. 通过与Pt/CoFeB对比, 研究发现Bi2Te3/CoFeB的发射性能与Pt/CoFeB双层异质结相当. 实验还对生长在不同衬底上的Bi2Te3/CoFeB的发射性能进行了对比研究, 发现MgO衬底上制备的样品具有相对较好的太赫兹辐射性能. 本实验研究不仅对自旋太赫兹发射机理有更加深入的认识, 而且通过样品和结构的优化, 有望获得更高的发射效率, 且该发射器具有大尺寸批量生长、成本较低的优势, 具备商业化应用的潜力.
    High-performance terahertz emitters, which convert the femtosecond laser pulses into terahertz pulses, are essential for terahertz spectroscopy technology and terahertz wireless communication. Spintronic terahertz emitters based on ferromagnet/nonmagnet bilayers have attracted tremendous attention due to their high efficiency, ultra-broadband, low cost and high flexibility. Here, we systematically investigate the terahertz emission from polycrystalline topological insulator Bi2Te3/ferromagnetic CoFeB heterostructure grown by magnetron sputtering. The Bi2Te3/CoFeB heterostructure exhibits high efficiency of terahertz emission, and the polarization of terahertz waves can be controlled by the external magnetic field direction. The performance of Bi2Te3/CoFeB heterostructure is almost comparable to that of the Pt/CoFeB bilayer. In contrast, no terahertz emission is observed in the pure Bi2Te3 or CoFeB film driven by femtosecond laser pulses, probably because the Bi2Te3 prepared by sputtering is polycrystalline and the thickness of CoFeB is too thin. We also compare the performances of Bi2Te3/CoFeB grown on MgO, glass and high-resistivity silicon substrates, and find that the samples grown on MgO substrates exhibit the best emission performances. The glass substrate absorbs more terahertz waves than MgO substrate, resulting in a slightly weaker terahertz signal emitted from the Bi2Te3/CoFeB grown on the glass substrate. Although the absorption coefficient of high-resistivity silicon to terahertz waves is very small, the residual pump light excites the high-resistivity silicon to generate the photo-generated carriers, which change the conductivity of the high-resistivity silicon and reduce the transmittance of terahertz wave. We attribute the mechanism of the terahertz emission to the spin-charge conversion at the interface of Bi2Te3/CoFeB. The terahertz emission efficiency of our sample is expected to be able to be further improved by optimizing the samples. Moreover, with the sputtering method, it is possible to fabricate large area samples at low cost, which is critical for commercial applications.
      通信作者: 吴晓君, xiaojunwu@buaa.edu.cn ; 赵巍胜, weisheng.zhao@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61905007, 61627813, 11904016)、北航合肥创新研究院项目(批准号: BHKX-19-01, BHKX-19-02)和北京市自然科学基金(批准号: 4194083)资助的课题
      Corresponding author: Wu Xiao-Jun, xiaojunwu@buaa.edu.cn ; Zhao Wei-Sheng, weisheng.zhao@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905007, 61627813, 11904016), the Beihang Hefei Innovation Research Institute Project, China (Grant Nos. BHKX-19-01, BHKX-19-02), and the Beijing Natural Science Foundation, China (Grant No. 4194083)
    [1]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [2]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483Google Scholar

    [3]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [4]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [5]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [6]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [7]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [8]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [9]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [10]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [11]

    Kondou K, Yoshimi R, Tsukazaki A, Fukuma Y, Matsuno J, Takahashi K S, Kawasaki M, Tokura Y, Otani Y 2016 Nat. Phys. 12 1027Google Scholar

    [12]

    Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar

    [13]

    Jamali M, Lee J S, Jeong J S, Mahfouzi F, Lv Y, Zhao Z, Nikolic B K, Mkhoyan K A, Samarth N, Wang J P 2015 Nano Lett. 15 7126Google Scholar

    [14]

    Pesin D, MacDonald A H 2012 Nat. Mater. 11 409Google Scholar

    [15]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar

    [16]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [17]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Munzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [18]

    Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar

    [19]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [20]

    van Exter M, Grischkowsky D 1990 Appl. Phys. Lett. 56 1694Google Scholar

    [21]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

  • 图 1  (a)实验装置示意图; (b) Bi2Te3(4)/CoFeB(2)异质结的结构示意图

    Fig. 1.  (a) Schematic diagram of experimental setup; (b) schematic illustration of BiTe/CoFeB heterostructure structure information

    图 2  生长在MgO、高阻硅和玻璃衬底上的Bi2Te3(4)/CoFeB(2)异质结的太赫兹发射性能比较

    Fig. 2.  Comparison of the terahertz waveforms generated from the Bi2Te3(4)/CoFeB(2) heterostructure grown on MgO, high resistivity silicon, and glass substrates.

    图 3  (a) CoFeB(2), Bi2Te3(4)和Bi2Te3(4)/CoFeB(2)辐射的太赫兹波形; (b) Bi2Te3(4)/CoFeB(2)辐射的太赫兹频域谱

    Fig. 3.  (a) Terahertz waveforms generated from CoFeB(2), Bi2Te3(4), and Bi2Te3(4)/CoFeB(2), respectively; (b) terahertz spectra obtained from Bi2Te3(4)/CoFeB(2).

    图 4  Bi2Te3(4)/CoFeB(2)异质结的太赫兹辐射 (a) 抽运光从Bi2Te3(4)/CoFeB(2)样品正面和背面入射以及磁场反向时Bi2Te3(4)/CoFeB(2)辐射的太赫兹波形; (b) Bi2Te3(4)/CoFeB(2)异质结发射的太赫兹脉冲的峰值振幅与施加的外磁场方向的关系

    Fig. 4.  Terahertz emission from Bi2Te3(4)/CoFeB(2) heterostructure: (a) Terahertz waveforms emitted from the Bi2Te3(4)/CoFeB(2) heterostructure measured with front and back sample excitation and reversed magnetic field; (b) the peak amplitude of the terahertz signal emitted from the Bi2Te3(4)/CoFeB(2) heterostructure as a function of magnetic field angle θ, with respect to the x-axis.

    图 5  Bi2Te3(4)/CoFeB(2), W(4)/CoFeB(2.2), Pt(4)/CoFeB(2.2)的太赫兹发射性能比较

    Fig. 5.  Comparison of the terahertz waveforms generated from the Bi2Te3(4)/CoFeB(2), W(4)/CoFeB(2.2), and Pt(4)/CoFeB(2.2).

  • [1]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [2]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483Google Scholar

    [3]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [4]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [5]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [6]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [7]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [8]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [9]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [10]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [11]

    Kondou K, Yoshimi R, Tsukazaki A, Fukuma Y, Matsuno J, Takahashi K S, Kawasaki M, Tokura Y, Otani Y 2016 Nat. Phys. 12 1027Google Scholar

    [12]

    Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar

    [13]

    Jamali M, Lee J S, Jeong J S, Mahfouzi F, Lv Y, Zhao Z, Nikolic B K, Mkhoyan K A, Samarth N, Wang J P 2015 Nano Lett. 15 7126Google Scholar

    [14]

    Pesin D, MacDonald A H 2012 Nat. Mater. 11 409Google Scholar

    [15]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar

    [16]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [17]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Munzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [18]

    Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar

    [19]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [20]

    van Exter M, Grischkowsky D 1990 Appl. Phys. Lett. 56 1694Google Scholar

    [21]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究. 物理学报, 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [2] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [3] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [4] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [5] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究. 物理学报, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [6] 朱卫卫, 张秋菊, 张延惠, 焦扬. 电子在激光驻波场中运动产生的太赫兹及X射线辐射研究. 物理学报, 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [7] 刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛. 飞秒激光低压N2等离子体特性的实验研究. 物理学报, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [8] 张铠云, 杜海伟, 陈民, 盛政明. 基于光场离化电流机制产生强太赫兹辐射的参数优化研究. 物理学报, 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [9] 王光昶, 马春生, 张建炜, 白春燕, 刘玉红, 郑志坚. 飞秒激光与固体靶相互作用中光辐射时间特性的实验研究. 物理学报, 2012, 61(9): 095201. doi: 10.7498/aps.61.095201
    [10] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究. 物理学报, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [11] 祁春超, 欧阳征标. 基于600—2000 nm抽运源的太赫兹相干光源的最新进展. 物理学报, 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [12] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [13] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [14] 郭凯敏, 高勋, 薛念亮, 赵振明, 李海军, 鲁毅, 林景全. 飞秒激光等离子体单丝导电性能的空间分辨研究. 物理学报, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [15] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [16] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响. 物理学报, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [17] 赵红敏, 王鹿霞. 异质结中桥分子电子转移的飞秒激光控制研究. 物理学报, 2009, 58(2): 1332-1337. doi: 10.7498/aps.58.1332
    [18] 王鹿霞, 樊飞. 飞秒激光作用下异质结的线性吸收谱研究. 物理学报, 2009, 58(2): 1326-1331. doi: 10.7498/aps.58.1326
    [19] 仲佳勇, 李玉同, 鲁 欣, 张 翼, Bernhardt Jens, 刘 峰, 郝作强, 张 喆, 于全芝, 陈 民, 远晓辉, 梁文锡, 赵 刚, 张 杰. 空气中单个激光等离子体通道的形成条件. 物理学报, 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [20] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
计量
  • 文章访问数:  7290
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-29
  • 修回日期:  2020-06-06
  • 上网日期:  2020-06-15
  • 刊出日期:  2020-10-20

/

返回文章
返回