搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体光丝中太赫兹频谱的调控

李晓璐 白亚 刘鹏

引用本文:
Citation:

激光等离子体光丝中太赫兹频谱的调控

李晓璐, 白亚, 刘鹏

Control of the terahertz spectra generated from laser induced plasma

Li Xiao-Lu, Bai Ya, Liu Peng
PDF
HTML
导出引用
  • 研究了双色激光场激发空气成丝产生太赫兹辐射频谱的变化规律. 实验观察到随驱动光功率和光丝长度增加, 太赫兹光谱主要发生红移的现象. 分析表明, 由于等离子体密度的增加, 太赫兹辐射的趋肤深度减小, 等离子体吸收主导了红移的发生. 在光丝足够短的条件下, 趋肤深度远大于光丝长度, 从而产生等离子体振荡主导的太赫兹辐射光谱蓝移. 本研究为超快宽带太赫兹辐射的频谱调控提供了新思路.
    Broadband terahertz (THz) emission generated from laser induced gas plasma provides an effective tool for studying nonlinear spectrum, imaging and remote sensing. Recently, the contribution of plasma oscillation to the THz emission was revealed from the nitrogen molecules pumped by intense two-color laser pulses. Plasma oscillation contributes only to the THz emission at relatively low plasma density due to negligible plasma absorption. More generally, with the THz emission generated from the ionizing gaseous medium, the surrounding plasma is expected to play an important role in the generation process. For the THz radiation from laser filament, the plasma region is extended in the laser propagation direction, and the effect of surrounding plasma on the emitted THz spectrum needs studying. In this work, we investigate the relation between pump power and filament length from THz spectrum emitted by air filament driven by two-color laser pulse. The time domain spectrum of THz field is recorded by an electro-optic (EO) sampling technique. In our experiments, significant frequency shifts are observed as the pump power and the filament length increase, and we find that the center frequency of the THz radiation is shifted towards longer wavelength, which is the so called red-shift of the THz spectrum. This red-shift is independent of THz radiation angle. The observations are explained by the plasma absorption inside the air filament. Our theoretical model is based on three mechanisms: the ionization-induced photocurrent, the plasma current oscillation and the plasma absorption. We coherently add up all the local THz fields inside the air filament, and simultaneously consider the plasma absorption induced correction of the THz spectrum. The simulation well reproduces the experimental observation. The skin depth decreases as the plasma density increases, thus the plasma absorption dominates the red-shift process. If the skin depth is larger than the filament length, the plasma oscillation contributes to the THz spectrum dominantly, and thus leading to the blue-shift of THz spectrum. Our results indicate that for the extended filament length or higher plasma density, the combining effect of photocurrent, plasma oscillation and absorption, results in the observed low-frequency broadband THz spectrum. Our study offers a method of coherently controlling the broadband THz spectrum.
      通信作者: 白亚, pipbear@siom.ac.cn ; 刘鹏, peng@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11874373)和中国科学院战略性先导科技专项(批准号: XDB16000000)资助的课题
      Corresponding author: Bai Ya, pipbear@siom.ac.cn ; Liu Peng, peng@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874373) and the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB16000000)
    [1]

    周胜利, 张存林 2009 航天返回与遥感 30 32Google Scholar

    Zhou S L, Zhang C L 2009 Spacecraft Recovery & Remote Sensing 30 32Google Scholar

    [2]

    Grischkowsky D, Keiding S, van Exter M, Fattinger C 1990 J. Opt. Soc. Am. B 7 2006Google Scholar

    [3]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [4]

    Liu W, Luo Q, Chin S L 2003 Chin. Opt. Lett. 1 56

    [5]

    Li Y T, Wang W M, Li C, Sheng Z M 2012 Chin.Phys. B 21 095203Google Scholar

    [6]

    Pickwell E, Wallace V P 2006 J. Phy. D Appl. Phys. 39 301Google Scholar

    [7]

    何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 物理学报 56 5802Google Scholar

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta Phys. Sin. 56 5802Google Scholar

    [8]

    Clery D 2002 Science 297 761Google Scholar

    [9]

    张显斌, 施卫 2006 物理学报 55 5237Google Scholar

    Zhang X B, Shi W 2006 Acta Phys. Sin. 55 5237Google Scholar

    [10]

    You D, Jones R R, Bucksbaum P H, Dykaar D R 1993 Opt. Lett. 18 290Google Scholar

    [11]

    Dreyhaupt A, Winnerl S, Dekorsy T, Helm M 2005 Appl. Phys. Lett. 86 121114Google Scholar

    [12]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497Google Scholar

    [13]

    Fülöp J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J 2012 Opt. Lett. 37 557Google Scholar

    [14]

    Hamster H, Sullivan A, Gordon S, White W, Falcone R W 1993 Phys. Rev. Lett. 71 2725Google Scholar

    [15]

    Matsubara E, Nagai M, Ashida M 2012 Appl. Phys. Lett. 101 011105Google Scholar

    [16]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2012 IEEE. J. Quantum. Elect. 48 797Google Scholar

    [17]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210Google Scholar

    [18]

    Oh T I, Yoo Y J, You Y S, Kim K Y 2014 Appl. Phys. Lett. 105 041103Google Scholar

    [19]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577Google Scholar

    [20]

    Debayle A, Gremillet L, BergéL, Köhler C 2014 Opt. Express 22 13691Google Scholar

    [21]

    Li N, Bai Y, Miao T S, Liu P, Li R X, Xu Z Z 2016 Opt. Express 24 23009Google Scholar

    [22]

    Li X L, Y Bai, Li N, Liu P 2018 Opt. Lett. 43 114Google Scholar

    [23]

    You Y S, Oh T I, Kim K Y 2012 Phys. Rev. Lett. 109 183902Google Scholar

    [24]

    Gorodetsky A, Koulouklidis A D, Massaouti M, Tzortzakis S 2014 Phys. Rev. A 89 033838Google Scholar

    [25]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photonics 2 605Google Scholar

  • 图 1  实验示意图

    Fig. 1.  Experimental setup.

    图 2  当驱动光功率分别为25 GW (红色实线)及75 GW(蓝色点线)时实验测量的(a)时域光谱及(b)归一化频谱; (c) THz光谱的中心频率随着驱动光功率的变化(其中蓝色点图为实验结果图, 红色曲线为模拟结果)

    Fig. 2.  Measured (a) THz temporal waveforms and (b) normalized THz spectra at different pump power; (c) central frequencies as a function of the pump energy (The blue dots are the experimental results and the red solid line is from the simulation).

    图 3  (a) 驱动光功率为45 GW时, 频率为1 THz与3 THz的辐射角分布; (b)不同锥形辐射角下, THz光谱的中心频率随着驱动光功率的变化 (虚线连接的实心点为实验结果, 实线为计算结果)

    Fig. 3.  (a) Far-field THz profiles at different frequencies at the pump power of 45 GW; (b) THz central frequencies as a function of the pump energy at various emission angles (Dashed line with solid dots is the experimental results and the solid line is the simulation results)

    图 4  驱动光功率为25 GW 时 (a)沿激光传输方向中点处径向和(b)沿驱动光传输方向z的等离子体频率(蓝色实线)及趋肤深度(红色点线)

    Fig. 4.  Plasma frequency (blue solid line) and skin depth (red dot line) as a function of the (a) radial axis and (b) pro-pagation direction at the pump power of 25 GW.

    图 5  当驱动光功率分别为25 GW和75 GW时模拟计算的归一化频谱

    Fig. 5.  The simulated THz spectra at 25 and 75 GW pump power.

    图 6  THz光谱的中心频率随着等离子体光丝长度的变化(蓝色点图为实验结果图, 红色曲线为模拟结果)

    Fig. 6.  THz central frequencies as a function of the plasma length (The blue dots are the experimental results and the red solid line is the simulation results).

  • [1]

    周胜利, 张存林 2009 航天返回与遥感 30 32Google Scholar

    Zhou S L, Zhang C L 2009 Spacecraft Recovery & Remote Sensing 30 32Google Scholar

    [2]

    Grischkowsky D, Keiding S, van Exter M, Fattinger C 1990 J. Opt. Soc. Am. B 7 2006Google Scholar

    [3]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [4]

    Liu W, Luo Q, Chin S L 2003 Chin. Opt. Lett. 1 56

    [5]

    Li Y T, Wang W M, Li C, Sheng Z M 2012 Chin.Phys. B 21 095203Google Scholar

    [6]

    Pickwell E, Wallace V P 2006 J. Phy. D Appl. Phys. 39 301Google Scholar

    [7]

    何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 物理学报 56 5802Google Scholar

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta Phys. Sin. 56 5802Google Scholar

    [8]

    Clery D 2002 Science 297 761Google Scholar

    [9]

    张显斌, 施卫 2006 物理学报 55 5237Google Scholar

    Zhang X B, Shi W 2006 Acta Phys. Sin. 55 5237Google Scholar

    [10]

    You D, Jones R R, Bucksbaum P H, Dykaar D R 1993 Opt. Lett. 18 290Google Scholar

    [11]

    Dreyhaupt A, Winnerl S, Dekorsy T, Helm M 2005 Appl. Phys. Lett. 86 121114Google Scholar

    [12]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497Google Scholar

    [13]

    Fülöp J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J 2012 Opt. Lett. 37 557Google Scholar

    [14]

    Hamster H, Sullivan A, Gordon S, White W, Falcone R W 1993 Phys. Rev. Lett. 71 2725Google Scholar

    [15]

    Matsubara E, Nagai M, Ashida M 2012 Appl. Phys. Lett. 101 011105Google Scholar

    [16]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2012 IEEE. J. Quantum. Elect. 48 797Google Scholar

    [17]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210Google Scholar

    [18]

    Oh T I, Yoo Y J, You Y S, Kim K Y 2014 Appl. Phys. Lett. 105 041103Google Scholar

    [19]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577Google Scholar

    [20]

    Debayle A, Gremillet L, BergéL, Köhler C 2014 Opt. Express 22 13691Google Scholar

    [21]

    Li N, Bai Y, Miao T S, Liu P, Li R X, Xu Z Z 2016 Opt. Express 24 23009Google Scholar

    [22]

    Li X L, Y Bai, Li N, Liu P 2018 Opt. Lett. 43 114Google Scholar

    [23]

    You Y S, Oh T I, Kim K Y 2012 Phys. Rev. Lett. 109 183902Google Scholar

    [24]

    Gorodetsky A, Koulouklidis A D, Massaouti M, Tzortzakis S 2014 Phys. Rev. A 89 033838Google Scholar

    [25]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photonics 2 605Google Scholar

  • [1] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [2] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [3] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [4] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [5] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [6] 于新明, 程书博, 易有根, 张继彦, 蒲昱东, 赵阳, 胡峰, 杨家敏, 郑志坚. Al等离子体类锂伴线的布居机制分析及实验应用. 物理学报, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [7] 纪运景, 卞保民, 童朝霞, 陆 建. 靶材偏置低电压对激光等离子体诱导靶上电势信号的影响. 物理学报, 2008, 57(2): 980-984. doi: 10.7498/aps.57.980
    [8] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [9] 郑志远, 张 杰, 郝作强, 远晓辉, 张 喆, 鲁 欣, 王兆华, 魏志义. 靶结构对激光等离子体动量耦合系数的影响. 物理学报, 2006, 55(1): 326-330. doi: 10.7498/aps.55.326
    [10] 张秋菊, 盛政明, 王兴海, 满宝元, 苍 宇, 张 杰. 相位反射产生的激光场空洞现象及其与激光等离子体参数相关性研究. 物理学报, 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [11] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [12] 王哲斌, 赵 斌, 郑 坚, 胡广月, 刘万东, 俞昌旋, 蒋小华, 李文洪, 刘慎业, 丁永坤, 郑志坚. 激光等离子体中Thomson散射光谱的拟合. 物理学报, 2005, 54(1): 211-216. doi: 10.7498/aps.54.211
    [13] 张秋菊, 盛政明, 苍 宇, 张 杰. 激光脉冲诱导的等离子体密度调制及其产生的相位反射. 物理学报, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [14] 郑志远, 鲁 欣, 张 杰, 郝作强, 远晓辉, 王兆华. 激光等离子体动量转换效率的实验研究. 物理学报, 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [15] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [16] 顾震宇, 季沛勇. 等离子体密度对多光子电离的影响. 物理学报, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [17] 王薇, 张杰, V.K.Senecha. 对激光等离子体中X射线的产生与辐射加热研究. 物理学报, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [18] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [19] 张杰, 王薇. 数值模拟辐射场对激光等离子体中物理过程的影响. 物理学报, 2001, 50(8): 1517-1520. doi: 10.7498/aps.50.1517
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  7384
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-05
  • 修回日期:  2019-11-05
  • 上网日期:  2020-01-01
  • 刊出日期:  2020-01-20

/

返回文章
返回