搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置

史路林 程锐 王昭 曹世权 杨杰 周泽贤 陈燕红 王国东 惠得轩 金雪剑 吴晓霞 雷瑜 王瑜玉 苏茂根

引用本文:
Citation:

近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置

史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根

Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region

Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen
PDF
HTML
导出引用
  • 近玻尔速度能区高电荷态离子在稠密等离子体中的能量损失是强流重离子束驱动的高能量密度物理等前沿研究中的核心物理问题之一. 基于中国科学院近代物理研究所的320 kV实验平台, 新建立了一套近玻尔速度能区离子束与激光等离子体相互作用的实验研究装置, 用于开展高精度的离子能量损失和电荷态研究. 本文将详细介绍该装置的特点, 包括脉冲离子束(≥ 200 ns)的产生与调控、高密度(1017—1021 cm–3)激光等离子体靶的制备、等离子体参数诊断与离子的高精度测量(< 1%)等. 基于该装置已开展了百keV的质子束和4 MeV的 Xe15+离子束与激光Al等离子体靶相互作用的实验, 并取得了相应的结果. 本实验装置能够为中国在近玻尔速度能区高电荷离子与稠密激光等离子体相互作用研究提供高精度的实验数据, 以促进理论工作的发展.
    Ion energy loss in the interaction between highly charged ions and dense plasma near Bohr velocity energy region is one of the important physical problems in the field of high-energy density physics driven by intense heavy ion beams. Based on the 320 kV experimental platform at the Institute of Modern Physics, Chinese Academy of Sciences, a new experimental setup was built for the research of interaction between ions and laser-produced plasma near the Bohr velocity, where the ion energy loss and charge state distribution can be experimentally investigated. In this paper we introduce the new setup in detail, including the generation and controlling of pulsed ion beam ( ≥ 200 ns); the preparation of high-density laser plasma target (1017—1021 cm–3); the diagnostics of plasma and the developed high energy resolution ion measurement system (< 1%). In the experiment, the charge distribution of Xe15+ ions with 4 MeV penetrating through the laser-produced Al plasma target is measured. The charge-state analysis device observes different results without and with the plasma, in which the outgoing Xe ion charge-state changes correspondingly from the 15+ to 10+, thus the electron capture process is believed to be dominant. In addition, the proton energy loss is also measured by using the magnetic spectrometer, showing that the experimental energy loss is about 2.0 keV, 30% higher than those theoretical predictions , which can be attributed to the fact that in the near Bohr velocity energy regime, the first-order Born approximation condition is not valid, thus the Bethe model and SSM model are inapplicable to the experimental results. In future, a systematic study will be performed based on our ions-plasma ineteraction setup, and the energy loss and charge state data will be introduced.
      通信作者: 程锐, chengrui@impcas.ac.cn ; 苏茂根, sumg@nwnu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2022YFA1602500)、国家自然科学基金(批准号: 12064040, 12204382)、国家自然科学基金国际(地区)合作与交流项目(批准号: 12120101005)和甘肃省自然科学基金(批准号: 21JR7RA129)资助的课题.
      Corresponding author: Cheng Rui, chengrui@impcas.ac.cn ; Su Mao-Gen, sumg@nwnu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant Nos. 12064040, 12204382), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 12120101005), and the Natural Science Foundation of Gansu Province, China (Grant No. 21JR7RA129).
    [1]

    Hofmann I 2018 MRE 3 1Google Scholar

    [2]

    Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28 032712Google Scholar

    [3]

    McMahon J M, Morales M A, Pierleoni C, Ceperley D M 2012 Rev. Modern Phys. 84 1607Google Scholar

    [4]

    Zhao Y T, Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014 High Power Laser Sci. Engine. 2 1Google Scholar

    [5]

    任洁茹, 王佳乐, 陈本正等 2021 强激光与粒子束 33 012005Google Scholar

    Ren J R, Wang J L, Chen B Z, et al. 2021 High Power Laser Part. Beams 33 012005Google Scholar

    [6]

    Schoenberg K, Bagnoud V, Blazevic A, et al. 2020 Phys. Plasmas 27 043103Google Scholar

    [7]

    赵永涛, 肖国青, 李福利 2016 物理 45 98Google Scholar

    Zhao Y T, Xiao G Q, Li F L 2016 Physics 45 98Google Scholar

    [8]

    程锐, 张晟, 申国栋等 2020 中国科学: 物理学 力学 天文学 11 112011Google Scholar

    Cheng R, Zhang S, Shen G D, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112011Google Scholar

    [9]

    赵永涛, 张子民, 程锐等 2020 中国科学: 物理学 力学 天文学 11 112004Google Scholar

    Zhao Y T, Zhang Z M, Cheng R, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112004Google Scholar

    [10]

    Ni P, Hoffmann D, Kulish M, Nikolaev D, Tahir N A, Udrea S, Varentsov D, Wahl H 2006 J. Phys. IV France. 133 977Google Scholar

    [11]

    Mintsev V, Kim V, Lomonosov I, Nikolaev D, Ostrik A, Shilkin N, Shutov A, Ternovoi V, Yuriev D, Fortov V, Golubev A, Kantsyrev A, Varentsov D, Hoffmann D 2016 Contrib. Plasma Phys. 56 281Google Scholar

    [12]

    Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 MRE 3 85Google Scholar

    [13]

    Frenje J A, Grabowski P E, Li C K, Seguin F H, Zylstra A B, Gatu Johnson M, Petrasso R D, Yu Glebov V, Sangster T C 2015 Phys. Rev. Lett. 115 205001Google Scholar

    [14]

    Ren J R, Deng Z G, Qi W, et al. 2020 Nat. Commun. 11 5157Google Scholar

    [15]

    Roth M, Stöckl C, Süss W, Iwase O, Gericke D O, Bock R, Hoffmann D, Geissel M, Seelig W 2000 Europhys. Lett. 50 28Google Scholar

    [16]

    Frank A, Blazevic A, Grande P L, et al. 2010 Phys. Rev. E 81 026401Google Scholar

    [17]

    Frank A, Blazevic A, Bagnoud V, Basko M M, Börner M, Cayzac W, Kraus D, Heßling T, Hoffmann D, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz An, Roth M 2013 Phys. Rev. Lett. 110 115001Google Scholar

    [18]

    Cayzac W, Bagnoud V, Basko M M, Blazevic A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz An, orberger J V, Roth M 2015 Phys. Rev. E 92 053109Google Scholar

    [19]

    Cayzac W, Frank A, Ortner A, et al. 2017 Nat. Commun. 8 15693Google Scholar

    [20]

    Cheng R, Hu Z H, Hui D X, Zhao Y T, Chen Y H, Gao F, Lei Y, Wang Y Y, Zhu B L, Yang Y, Wang Z, Zhou Z X, Wang Y N, Yang J 2021 Phys. Rev. E 103 063216Google Scholar

    [21]

    Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar

    [22]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [23]

    Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Zhou Z X, Yang J, Ma X W 2021 Laser Part. Beams 2021 1

    [24]

    Lei Y, Cheng R, Zhou X M, Wang X, Wang Y Y, Ren J R, Zhao Y T, Ma X W, Xiao G Q 2018 Eur. Phys. J. D 72 1Google Scholar

    [25]

    Wang Z, Cheng R, Xue F B, et al. 2020 Phys. Scr. 95 105404Google Scholar

    [26]

    Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar

    [27]

    王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 物理学报 72 043401Google Scholar

    Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta phys. Sin. 72 043401Google Scholar

    [28]

    Zhou Z X, Guo B, Cheng R, et al. 2022 Nucl. Instrum. Methods Phys. Res. Sect. A 1026 166191Google Scholar

    [29]

    Vernhet D, Adoui L, Rozet J P, Wohrer K, Chetioui A, Cassimi A, Grandin J P, Ramillon J M, Cornille M, Stephan C 1997 Phys. Rev. Lett. 79 3625Google Scholar

    [30]

    Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar

    [31]

    Li C K, Petrasso R D 1993 Phys. Rev. Lett. 70 3059Google Scholar

    [32]

    Schlanges M, Gericke D O 1999 Phys. Rev. E 60 904Google Scholar

    [33]

    Gericke D O, Schlanges M 2003 Phys. Rev. E 67 037401Google Scholar

    [34]

    Zhang S, Chen C, Lan T, et al. 2020 Rev. Sci. Instrum. 91 063501Google Scholar

    [35]

    Lan T, Zhang S, Ding W X, et al. 2021 Rev. Sci. Instrum. 92 093506Google Scholar

    [36]

    骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar

    Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar

    [37]

    曹世权, 苏茂根, 赵环昱, 张俊杰, 敏琦, 孙对兄, 何思奇, 赵红卫, 董晨钟 2022 中国科学: 物理学 力学 天文学 50 065202

    Cao S Q, Su M G, Zhao H Y, Zhang J J, Min Q, Sun D X, He S Q, Zhao H W, Dong C Z 2022 Scientia Sinica Physica, Mechanica & Astronomica 50 065202

    [38]

    Tolstikhina I Y, Shevelko V P 2018 Physics-Uspekhi 61 247Google Scholar

    [39]

    Bethe H 1930 Annalen der Physik (Leipzig) 397 325Google Scholar

    [40]

    Gardes D, Servajean A, Kubica B, Fleurier C, Hong D, Deutsch C, Maynard G 1992 Phys. Rev. A 46 5101Google Scholar

  • 图 1  NBVER离子束与LPP相互作用实验装置

    Fig. 1.  Experimental set-ups of ions beam LPP interaction in the NBVER.

    图 2  LPPT产生与匹配的等离子体诊断系统示意图(ICCD, 光谱仪的一个单元)

    Fig. 2.  Schematic diagram of producing the LPPT and matching the plasma diagnostics system (ICCD, a unit of the spectrometer).

    图 3  激光光纤干涉仪示意图[34]

    Fig. 3.  Diagram of the optical fiber interferometer[34].

    图 4  离子束与LPPT相互作用的高精度空间耦合调控

    Fig. 4.  High precision spatial coupling control of ion beam interaction with LPPT.

    图 5  离子电荷态分析装置

    Fig. 5.  Instrument of ions charge state analyzer

    图 6  磁谱仪装置

    Fig. 6.  Instrument of magnetic spectrometer.

    图 7  实验装置各单元的时序控制关系图 (a) 实验系统时空耦合关系; (b) 时序控制逻辑顺序

    Fig. 7.  Triger sequences control diagram of each unit of experimental apparatus: (a) Spatio-temporal coupling of the experimental system; (b) sequence control logic sequence.

    图 8  利用在线等离子体诊断装置获取的激光Al等离子体靶相关参数演化信息 (a)等离子体羽的空间分布; (b)光谱法与激光光纤干涉法分别诊断得到的等离子体的平均自由电子密度; (c)光谱法诊断得到的等离子体靶区的平均温度

    Fig. 8.  Evolution of the laser-produced Al plasma target related parameters obtained by online plasma diagnostic device: (a) Spatial distribution of plasma-plume; (b) plasma diagnosed by optical emission spectroscopy and laser fiber interferometer, respectively; (c) average temperature of plasma target diagnosed by optical emission spectroscopy.

    图 9  电荷态分析装置测量的Xe15+离子在有/无激光Al等离子体靶条件下的电荷态分布结果

    Fig. 9.  Charge state distributions of Xe15+ ions with/without the laser-produced Al plasma target conditions measured by the charge state analysis device.

    图 10  磁能谱仪测量的质子在有/无激光Al等离子体靶条件下能谱结果 (a)图像结果; (b)数据结果

    Fig. 10.  Energy spectrum of proton with/without laser-produced Al plasma target conditions measured by the magnetic energy spectrometer: (a) Image results; (b) data results.

    图 11  实验测量到的150和200 keV 质子在LPPT中能损与Bethe[39]和SSM[40]理论计算结果的对比

    Fig. 11.  Comparison of experimental energy loss of 150 and 200 keV proton in the laser-produced plasma with theoretical calculations from the Bethe[39] and SSM[40] models.

  • [1]

    Hofmann I 2018 MRE 3 1Google Scholar

    [2]

    Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28 032712Google Scholar

    [3]

    McMahon J M, Morales M A, Pierleoni C, Ceperley D M 2012 Rev. Modern Phys. 84 1607Google Scholar

    [4]

    Zhao Y T, Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014 High Power Laser Sci. Engine. 2 1Google Scholar

    [5]

    任洁茹, 王佳乐, 陈本正等 2021 强激光与粒子束 33 012005Google Scholar

    Ren J R, Wang J L, Chen B Z, et al. 2021 High Power Laser Part. Beams 33 012005Google Scholar

    [6]

    Schoenberg K, Bagnoud V, Blazevic A, et al. 2020 Phys. Plasmas 27 043103Google Scholar

    [7]

    赵永涛, 肖国青, 李福利 2016 物理 45 98Google Scholar

    Zhao Y T, Xiao G Q, Li F L 2016 Physics 45 98Google Scholar

    [8]

    程锐, 张晟, 申国栋等 2020 中国科学: 物理学 力学 天文学 11 112011Google Scholar

    Cheng R, Zhang S, Shen G D, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112011Google Scholar

    [9]

    赵永涛, 张子民, 程锐等 2020 中国科学: 物理学 力学 天文学 11 112004Google Scholar

    Zhao Y T, Zhang Z M, Cheng R, et al. 2020 Sci. Sin. Phys. Mech. Astron. 11 112004Google Scholar

    [10]

    Ni P, Hoffmann D, Kulish M, Nikolaev D, Tahir N A, Udrea S, Varentsov D, Wahl H 2006 J. Phys. IV France. 133 977Google Scholar

    [11]

    Mintsev V, Kim V, Lomonosov I, Nikolaev D, Ostrik A, Shilkin N, Shutov A, Ternovoi V, Yuriev D, Fortov V, Golubev A, Kantsyrev A, Varentsov D, Hoffmann D 2016 Contrib. Plasma Phys. 56 281Google Scholar

    [12]

    Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 MRE 3 85Google Scholar

    [13]

    Frenje J A, Grabowski P E, Li C K, Seguin F H, Zylstra A B, Gatu Johnson M, Petrasso R D, Yu Glebov V, Sangster T C 2015 Phys. Rev. Lett. 115 205001Google Scholar

    [14]

    Ren J R, Deng Z G, Qi W, et al. 2020 Nat. Commun. 11 5157Google Scholar

    [15]

    Roth M, Stöckl C, Süss W, Iwase O, Gericke D O, Bock R, Hoffmann D, Geissel M, Seelig W 2000 Europhys. Lett. 50 28Google Scholar

    [16]

    Frank A, Blazevic A, Grande P L, et al. 2010 Phys. Rev. E 81 026401Google Scholar

    [17]

    Frank A, Blazevic A, Bagnoud V, Basko M M, Börner M, Cayzac W, Kraus D, Heßling T, Hoffmann D, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz An, Roth M 2013 Phys. Rev. Lett. 110 115001Google Scholar

    [18]

    Cayzac W, Bagnoud V, Basko M M, Blazevic A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz An, orberger J V, Roth M 2015 Phys. Rev. E 92 053109Google Scholar

    [19]

    Cayzac W, Frank A, Ortner A, et al. 2017 Nat. Commun. 8 15693Google Scholar

    [20]

    Cheng R, Hu Z H, Hui D X, Zhao Y T, Chen Y H, Gao F, Lei Y, Wang Y Y, Zhu B L, Yang Y, Wang Z, Zhou Z X, Wang Y N, Yang J 2021 Phys. Rev. E 103 063216Google Scholar

    [21]

    Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar

    [22]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [23]

    Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Zhou Z X, Yang J, Ma X W 2021 Laser Part. Beams 2021 1

    [24]

    Lei Y, Cheng R, Zhou X M, Wang X, Wang Y Y, Ren J R, Zhao Y T, Ma X W, Xiao G Q 2018 Eur. Phys. J. D 72 1Google Scholar

    [25]

    Wang Z, Cheng R, Xue F B, et al. 2020 Phys. Scr. 95 105404Google Scholar

    [26]

    Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar

    [27]

    王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 物理学报 72 043401Google Scholar

    Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta phys. Sin. 72 043401Google Scholar

    [28]

    Zhou Z X, Guo B, Cheng R, et al. 2022 Nucl. Instrum. Methods Phys. Res. Sect. A 1026 166191Google Scholar

    [29]

    Vernhet D, Adoui L, Rozet J P, Wohrer K, Chetioui A, Cassimi A, Grandin J P, Ramillon J M, Cornille M, Stephan C 1997 Phys. Rev. Lett. 79 3625Google Scholar

    [30]

    Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar

    [31]

    Li C K, Petrasso R D 1993 Phys. Rev. Lett. 70 3059Google Scholar

    [32]

    Schlanges M, Gericke D O 1999 Phys. Rev. E 60 904Google Scholar

    [33]

    Gericke D O, Schlanges M 2003 Phys. Rev. E 67 037401Google Scholar

    [34]

    Zhang S, Chen C, Lan T, et al. 2020 Rev. Sci. Instrum. 91 063501Google Scholar

    [35]

    Lan T, Zhang S, Ding W X, et al. 2021 Rev. Sci. Instrum. 92 093506Google Scholar

    [36]

    骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar

    Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar

    [37]

    曹世权, 苏茂根, 赵环昱, 张俊杰, 敏琦, 孙对兄, 何思奇, 赵红卫, 董晨钟 2022 中国科学: 物理学 力学 天文学 50 065202

    Cao S Q, Su M G, Zhao H Y, Zhang J J, Min Q, Sun D X, He S Q, Zhao H W, Dong C Z 2022 Scientia Sinica Physica, Mechanica & Astronomica 50 065202

    [38]

    Tolstikhina I Y, Shevelko V P 2018 Physics-Uspekhi 61 247Google Scholar

    [39]

    Bethe H 1930 Annalen der Physik (Leipzig) 397 325Google Scholar

    [40]

    Gardes D, Servajean A, Kubica B, Fleurier C, Hong D, Deutsch C, Maynard G 1992 Phys. Rev. A 46 5101Google Scholar

  • [1] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [2] 王辉林, 廖艳林, 赵艳, 章文, 谌正艮. 基于多激光束驱动准单能高能质子束模拟研究. 物理学报, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [3] 王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰. 极化效应对Bohr速度能区O5+离子在低密度氢等离子体中的能损影响. 物理学报, 2023, 72(4): 043401. doi: 10.7498/aps.72.20221875
    [4] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [5] 张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军. 129Xeq+离子入射Cu靶表面激发的近红外光谱线和X射线谱. 物理学报, 2020, 69(21): 213301. doi: 10.7498/aps.69.20200500
    [6] 陈燕红, 程锐, 张敏, 周贤明, 赵永涛, 王瑜玉, 雷瑜, 麻鹏鹏, 王昭, 任洁茹, 马新文, 肖国青. 利用质子能损检测气体靶区有效靶原子密度的实验研究. 物理学报, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [7] 邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. 低能质子束在氢等离子体中的能损研究. 物理学报, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [8] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [9] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [10] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [11] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [12] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [13] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [14] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [15] 杨海亮, 邱爱慈, 李静雅, 孙剑锋, 何小平, 汤俊萍, 王海洋, 黄建军, 任书庆, 邹丽丽, 杨 莉. 叠片法测量“闪光二号”加速器的高功率离子束能谱. 物理学报, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [16] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [17] 王桂秋, 王友年. 激光场对快速分子离子与固体相互作用的影响. 物理学报, 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
    [18] 杨家敏, 丁耀南, 陈 波, 郑志坚, 杨国洪, 张保汉, 王耀梅, 张文海. 等电子法测量小能量激光打靶等离子体电子温度. 物理学报, 2003, 52(2): 411-414. doi: 10.7498/aps.52.411
    [19] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
    [20] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
计量
  • 文章访问数:  3833
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-05-04
  • 上网日期:  2023-05-05
  • 刊出日期:  2023-07-05

/

返回文章
返回