搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究

黄厚科 汶伟强 黄忠魁 汪书兴 汤梅堂 李杰 冒立军 袁洋 万梦宇 刘畅 汪寒冰 周晓鹏 赵冬梅 严凯明 周云斌 原有进 杨建成 张少锋 朱林繁 马新文

引用本文:
Citation:

基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究

黄厚科, 汶伟强, 黄忠魁, 汪书兴, 汤梅堂, 李杰, 冒立军, 袁洋, 万梦宇, 刘畅, 汪寒冰, 周晓鹏, 赵冬梅, 严凯明, 周云斌, 原有进, 杨建成, 张少锋, 朱林繁, 马新文

Precision spectroscopy of dielectronic recombination experiments for highly charged ions at large facility HIAF: a simulation study

Huang Hou-Ke, Wen Wei-Qiang, Huang Zhong-Kui, Wang Shu-Xing, Tang Mei-Tang, Li Jie, Mao Li-Jun, Yuan Yang, Wan Meng-Yu, Liu Chang, Wang Han-Bin, Zhou Xiao-Peng, Zhao Dong-Mei, Yan Kai-Min, Zhou Yun-Bin, Yuan You-Jin, Yang Jian-Cheng, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen
PDF
导出引用
  • 高电荷态重离子的双电子复合精密谱实验不仅能够为天体物理、聚变等离子体物理等研究提供诊断和建模的关键原子物理数据,还可以用于检验强电磁场条件下的量子电动力学QED效应、相对论效应以及电子关联效应等基本物理模型。我国正在建设的“十二五”大科学装置强流重离子加速器HIAF(High Intensity heavy ion Acceleration Facility),其中的高精度环形谱仪SRing (Spectrometer Ring)装备有450 kV电子冷却器和80 kV超冷电子靶装置,能够在宽质心能量范围(从meV到几十keV)内对高电荷重离子开展双电子复合谱精密测量。本工作首先采用分子动力学方法模拟了SRing上超冷电子靶的电子束温度分布,模拟结果表明,热阴极产生的电子束经过磁场的绝热膨胀和电场加速后,电子束的横向温度从100 meV降至5 meV以下,而纵向温度则能从100 meV降至0.1 meV以下,这为开展高分辨和高精度的双电子复合实验提供了独一无二的实验条件。接着分析了SRing上超冷电子靶的电子束温度对双电子复合实验中共振峰能量分辨的影响,以类锂${ }_{54}^{129} \mathrm{Xe}^{51+}$和${ }_{92}^{238} U^{89+}$重离子为例,我们模拟了SRing上的双电子复合共振谱,并与兰州重离子储存环CSRe上的模拟结果进行了比较。结果表明,基于SRing超冷电子靶的双电子复合精密谱学实验在质心系能量较低的时候具有极高的能量分辨,能够测量更为精细的双电子复合共振结构。本研究为SRing上开展高电荷态重离子双电子复合谱精密测量检验强场量子电动力学QED效应和提取原子核结构信息等前沿实验奠定了坚实的基础。
    Dielectronic recombination (DR) experiments of highly charged ions not only provide essential atomic benchmark data for astrophysical and fusion plasma research but also serve as a stringent test for strong-field quantum electrodynamics (QED) effects, relativistic effects, and electron correlation effects. High-Intensity Heavy-Ion Accelerator Facility (HIAF), currently under construction at Huizhou, China, has a high-precision spectrometer ring (SRing) equipped with a 450 kV electron-cooler and an 80 kV ultracold electron-target. This advanced setup facilitates precise measurements of the DR process for highly charged ions across a broad range of center-of-mass energies, from meV to tens of keV. In this study, we employ molecular dynamics methods to simulate the electron beam temperature distribution of the ultracold electron-target at the SRing. The simulation results indicate that, following the designed adiabatic magnetic field and acceleration field treatment, the transverse and longitudinal electron beam temperature from the thermionic electron gun can be reduced from 100 meV to below 5 meV and 0.1 meV, respectively. Furthermore, we analyze the impact of this ultracold electron beam temperature on the resonance peaks and energy resolution in DR experiments. The resolution gain at the SRing electron-target is particularly pronounced at small electron-ion collision energies, which provides unique experimental conditions for the DR experiments. Using lithium-like ${ }_{54}^{129} \mathrm{Xe}^{51+}$ and ${ }_{92}^{238} U^{89+}$ ions as examples, we simulate the DR resonance spectrum at the SRing and compare them with the simulated results from the experimental cooler storage ring CSRe. The results reveal that the SRing experiments can resolve fine DR resonance structures with ultra-high energy resolution compared to those from the CSRe. This work lays the foundation for precise DR spectroscopy of highly charged ions at the SRing to stringent test of the strong-field QED effects and extract nuclear structure information.
  • [1]

    Savin D W, Bartsch T, Chen M H, Kahn S M, Liedahl D A, Linkemann J, Müller A, Schippers S, Schmitt M, Schwalm D, Wolf A 1997 Astrophys. J. 489 L115

    [2]

    Savin D W, Behar E, Kahn S M, Gwinner G, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Badnell N R, Chen M H, Gorczyca T W 2002 Astrophys. J. 138 337

    [3]

    Savin D W, Gwinner G, Grieser M, Repnow R, Schnell M, Schwalm D, Wolf A, Zhou S G, Kieslich S, Muller A, Schippers S, Colgan J, Loch S D, Badnell N R, Chen M H, Gu M F 2006 Astrophys. J. 642 1275

    [4]

    Savin D W, Kahn S M, Gwinner G, Grieser M, Repnow R, Saathoff G, Schwalm D, Wolf A, Muller A, Schippers S, Zavodszky P A, Chen M H, Gorczyca T W, Zatsarinny O, Gu M F 2003 Astrophys. J. Suppl. Ser. 147 421

    [5]

    Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Brandau C, Hoffknecht A, Muller A, Schippers S, Chen M H, Badnell N R 1999 Astrophys. J. Suppl. Ser. 123 687

    [6]

    Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Chen M H, Badnell N R, Gorczyca T W, Zatsarinny O 2002 Astrophys. J. 576 1098

    [7]

    Schmidt E W, Schippers S, Müller A, Lestinsky M, Sprenger F, Grieser M, Repnow R, Wolf A, Brandau C, Lukić D, Schnell M, Savin D W 2006 Astrophys. J. 641 L157

    [8]

    Larsson M 1995 Rep. Prog. Phys. 58 1267

    [9]

    Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143

    [10]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027

    [11]

    Brandau C, Kozhuharov C, Müller A, Shi W, Schippers S, Bartsch T, Böhm S, Böhme C, Hoffknecht A, Knopp H, Grün N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stöhlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202

    [12]

    Lestinsky M, Lindroth E, Orlov D, Schmidt E, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A, Müller A 2008 Phys. Rev. Lett. 100 033001

    [13]

    Brandau C, Kozhuharov C, Harman Z, Müller A, Schippers S, Kozhedub Y, Bernhardt D, Böhm S, Jacobi J, Schmidt E W 2008 Phys. Rev. Lett. 100 073201

    [14]

    Bates D R, Massey H S W 1943 Philos. Trans. Royal Soc. A 239 269

    [15]

    Badnell N R, Pindzola M S, Andersen L H, Bolko J, Schmidt H T 1991 J. Phys. B: At. Mol. Opt. Phys. 24 4441

    [16]

    LaGattuta K, Hahn Y 1981 Phys. Rev. A 24 785

    [17]

    Brooks R, Datla R, Griem H R 1978 Phys. Rev. Lett. 41 107

    [18]

    Müller A, Belić D, DePaola B, Djurić N, Dunn G, Mueller D, Timmer C 1987 Phy. Rev. A 36 599

    [19]

    Schippers S 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 350 61

    [20]

    Brandau C, Kozhuharov C (Shevelko V, Tawara H ed) 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer) pp283-306

    [21]

    Schuch R, Böhm S 2007 J. Phys. Conf. Ser. 88 012002

    [22]

    Huang Z K, Wen W Q, Wang H B, Xu X, Zhu L F, Chuai X Y, Yuan Y J, Zhu X L, Han X Y, Mao L J, Li J, Ma X M, Yan T L, Yang J C, Xiao G Q, Xia J W, Ma X 2015 Phys. Scr. T166 014023

    [23]

    Huang Z, Wang S, Wen W, Wang H, Ma W, Chen C, Zhang C, Chen D, Huang H, Shao L, Liu X, Zhou X, Mao L, Li J, Ma X, Tang M, Yang J, Yuan Y, Zhang S, Zhu L, Ma X 2023 Chin. Phys. B 32 073401

    [24]

    Danared H, Andler G, Bagge L, Herrlander C J, Hilke J, Jeansson J, Källberg A, Nilsson A, Paál A, Rensfelt K G, Rosengård U, Starker J, af Ugglas M 1994 Phys. Rev. Lett. 72 3775

    [25]

    Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001

    [26]

    Brandau C, Kozhuharov C, Harman Z, Müller A, Schippers S, Kozhedub Y S, Bernhardt D, Böhm S, Jacobi J, Schmidt E W, Mokler P H, Bosch F, Kluge H J, Stöhlker T, Beckert K, Beller P, Nolden F, Steck M, Gumberidze A, Reuschl R, Spillmann U, Currell F J, Tupitsyn I I, Shabaev V M, Jentschura U D, Keitel C H, Wolf A, Stachura Z 2008 Phys. Rev. Lett. 100 073201

    [27]

    Schippers S, Schmidt E W, Bernhardt D, Yu D, Muller A, Lestinsky M, Orlov D A, Grieser M, Repnow R, Wolf A 2007 Phys. Rev. Lett. 98 033001

    [28]

    Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235 2

    [29]

    Wang S X, Xu X, Huang Z K, Wen W Q, Wang H B, Khan N, Preval S P, Badnell N R, Schippers S, Mahmood S, Dou L J, Chuai X Y, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Tang M T, Yin D Y, Yang J C, Ma X, Zhu L F 2018 Astrophys. J. 862 2

    [30]

    Wang S X, Huang Z K, Wen W Q, Chen C Y, Schippers S, Xu X, Sardar S, Khan N, Wang H B, Dou L J, Mahmood S, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yuan Y J, Yang J C, Shi Y L, Dong C Z, Ma X W, Zhu L F 2019 Astron. Astrophys. 627 A171

    [31]

    Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808

    [32]

    Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 Phys. Rev. A 102 062823

    [33]

    Shao L, Huang Z-K, Wen W-Q, Wang S-X, Huang H-K, Ma W-L, Liu C, Wang H-B, Chen D-Y, Liu X, Zhou X-P, Zhao D-M, Zhang S-F, Zhu L-F, Ma X-W 2024 Acta Phys. Sin.73 123402 (in Chinese) [邵林, 黄忠魁,汶伟强, 汪书兴, 黄厚科,马万路, 刘畅, 汪寒冰,陈冬阳, 刘鑫, 周晓鹏,赵冬梅, 张少锋, 朱林繁,马新文 2024 物理学报73 123402]

    [34]

    Ma Y G, Zhao H W 2020 Sci. Sin.-Phys. Mech. Astron. 50 112001 (in Chinese) [马余刚,赵红卫 2020 中国科学:物理学 力学 天文学50 112001]

    [35]

    Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhng P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008 (in Chinese) [马新文, 张少锋,汶伟强, 杨杰, 朱小龙,钱东斌, 闫顺成, 张鹏鸣,郭大龙, 汪寒冰, 黄忠魁2020中国科学: 物理学 力学 天文学 50 112008]

    [36]

    Huang Z K, Wen W Q, Xu X, Wang H B, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 135

    [37]

    Håkan D 1995 Phys. Scr. 1995 121

    [38]

    Zaghloul M R 2017 ACM Trans. Math. Softw. 44 Article 22

    [39]

    Dou L, Xie L, Zhang D, Dong C, Wen W, Huang Z, Ma X 2017 Euro. Phys. J. D 71 128

    [40]

    Li C Y, Liu X J, Meng G W, Wang J G 2010 Acta Phys. Sin. 59 6044 (in Chinese) [李传莹, 刘晓菊, 孟广为,王建国 2010 物理学报59 6044]

    [41]

    Danared H 1993 Nucl. Instrum. Methods Phys. Res., Sect. A 335 397

    [42]

    Danared H 1998 Hyperfine Interact. 115 61

    [43]

    Zubova N A, Kozhedub Y S, Shabaev V M, Tupitsyn I I, Volotka A V, Plunien G, Brandau C, Stöhlker T 2014 Phys. Rev. A 90 062512

    [44]

    Chuai X Y, Huang Z K, Wen W Q, Wang H B, Xu X, Wang S X, Li J G, Dou L J, Zhao D M, Zhu X L, Mao L J, Yin D Y, Yang J C, Yuan Y J, Ma X W 2018 Nucl. Phys. Rev.35 196 (in Chinese) [啜晓亚, 黄忠魁,汶伟强, 汪寒冰, 许鑫,汪书兴, 李冀光, 豆丽君,赵冬梅, 朱小龙, 冒立军,殷达钰, 杨建成, 原有进,马新文 2018 原子核物理评论35 196]

  • [1] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究. 物理学报, doi: 10.7498/aps.73.20241290
    [2] 邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文. 重离子储存环CSRe上类钠Kr25+离子的双电子复合精密谱学实验研究. 物理学报, doi: 10.7498/aps.73.20240211
    [3] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, doi: 10.7498/aps.71.20212434
    [4] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, doi: 10.7498/aps.70.20212434
    [5] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, doi: 10.7498/aps.71.20211663
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, doi: 10.7498/aps.70.20211663
    [7] 符彦飙, 王旭东, 苏茂根, 董晨钟. Au34+离子双电子复合过程的理论研究. 物理学报, doi: 10.7498/aps.65.033401
    [8] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应. 物理学报, doi: 10.7498/aps.61.193201
    [9] 杨建会, 范强, 张建平. 类氖等电子系列离子基态的双电子复合速率系数研究. 物理学报, doi: 10.7498/aps.61.193101
    [10] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, doi: 10.7498/aps.59.7815
    [11] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, doi: 10.7498/aps.57.137
    [12] 师应龙, 董晨钟, 张登红, 符彦飙. 高离化态Hg和U离子的双电子复合过程的理论研究. 物理学报, doi: 10.7498/aps.57.88
    [13] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, doi: 10.7498/aps.56.5734
    [14] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, doi: 10.7498/aps.55.2221
    [15] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究. 物理学报, doi: 10.7498/aps.55.673
    [16] 张登红, 董晨钟, 颉录有, 丁晓斌, 符彦飙. 类氦离子的KLL双电子复合过程的相对论理论研究. 物理学报, doi: 10.7498/aps.55.112
    [17] 董晨钟, 符彦飙. 高离化态Cu18+离子的双电子复合及共振转移激发过程的理论研究. 物理学报, doi: 10.7498/aps.55.107
    [18] 易有根, 郑志坚, 颜君, 李萍, 方泉玉, 邱玉波. Au激光等离子体的双电子复合速率系数. 物理学报, doi: 10.7498/aps.51.2740
    [19] 盛勇, 蒋刚, 朱正和. 类氢类氦类锂镁离子双电子复合的旁观电子角动量研究. 物理学报, doi: 10.7498/aps.51.501
    [20] 焦荣珍, 程新路, 杨向东, 朱俊. 类镍Dy38+离子的双电子复合速率研究. 物理学报, doi: 10.7498/aps.51.1755
计量
  • 文章访问数:  153
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-25

/

返回文章
返回