-
高电荷态重离子的双电子复合精密谱实验不仅能够为天体物理、聚变等离子体物理等研究提供诊断和建模的关键原子物理数据,还可以用于检验强电磁场条件下的量子电动力学QED效应、相对论效应以及电子关联效应等基本物理模型。我国正在建设的“十二五”大科学装置强流重离子加速器HIAF(High Intensity heavy ion Acceleration Facility),其中的高精度环形谱仪SRing (Spectrometer Ring)装备有450 kV电子冷却器和80 kV超冷电子靶装置,能够在宽质心能量范围(从meV到几十keV)内对高电荷重离子开展双电子复合谱精密测量。本工作首先采用分子动力学方法模拟了SRing上超冷电子靶的电子束温度分布,模拟结果表明,热阴极产生的电子束经过磁场的绝热膨胀和电场加速后,电子束的横向温度从100 meV降至5 meV以下,而纵向温度则能从100 meV降至0.1 meV以下,这为开展高分辨和高精度的双电子复合实验提供了独一无二的实验条件。接着分析了SRing上超冷电子靶的电子束温度对双电子复合实验中共振峰能量分辨的影响,以类锂${ }_{54}^{129} \mathrm{Xe}^{51+}$和${ }_{92}^{238} U^{89+}$重离子为例,我们模拟了SRing上的双电子复合共振谱,并与兰州重离子储存环CSRe上的模拟结果进行了比较。结果表明,基于SRing超冷电子靶的双电子复合精密谱学实验在质心系能量较低的时候具有极高的能量分辨,能够测量更为精细的双电子复合共振结构。本研究为SRing上开展高电荷态重离子双电子复合谱精密测量检验强场量子电动力学QED效应和提取原子核结构信息等前沿实验奠定了坚实的基础。Dielectronic recombination (DR) experiments of highly charged ions not only provide essential atomic benchmark data for astrophysical and fusion plasma research but also serve as a stringent test for strong-field quantum electrodynamics (QED) effects, relativistic effects, and electron correlation effects. High-Intensity Heavy-Ion Accelerator Facility (HIAF), currently under construction at Huizhou, China, has a high-precision spectrometer ring (SRing) equipped with a 450 kV electron-cooler and an 80 kV ultracold electron-target. This advanced setup facilitates precise measurements of the DR process for highly charged ions across a broad range of center-of-mass energies, from meV to tens of keV. In this study, we employ molecular dynamics methods to simulate the electron beam temperature distribution of the ultracold electron-target at the SRing. The simulation results indicate that, following the designed adiabatic magnetic field and acceleration field treatment, the transverse and longitudinal electron beam temperature from the thermionic electron gun can be reduced from 100 meV to below 5 meV and 0.1 meV, respectively. Furthermore, we analyze the impact of this ultracold electron beam temperature on the resonance peaks and energy resolution in DR experiments. The resolution gain at the SRing electron-target is particularly pronounced at small electron-ion collision energies, which provides unique experimental conditions for the DR experiments. Using lithium-like ${ }_{54}^{129} \mathrm{Xe}^{51+}$ and ${ }_{92}^{238} U^{89+}$ ions as examples, we simulate the DR resonance spectrum at the SRing and compare them with the simulated results from the experimental cooler storage ring CSRe. The results reveal that the SRing experiments can resolve fine DR resonance structures with ultra-high energy resolution compared to those from the CSRe. This work lays the foundation for precise DR spectroscopy of highly charged ions at the SRing to stringent test of the strong-field QED effects and extract nuclear structure information.
-
Keywords:
- Highly charged ions /
- Storage ring /
- Dielectronic recombination /
- Ultracold electron-target /
- Strong-field QED effect
-
[1] Savin D W, Bartsch T, Chen M H, Kahn S M, Liedahl D A, Linkemann J, Müller A, Schippers S, Schmitt M, Schwalm D, Wolf A 1997 Astrophys. J. 489 L115
[2] Savin D W, Behar E, Kahn S M, Gwinner G, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Badnell N R, Chen M H, Gorczyca T W 2002 Astrophys. J. 138 337
[3] Savin D W, Gwinner G, Grieser M, Repnow R, Schnell M, Schwalm D, Wolf A, Zhou S G, Kieslich S, Muller A, Schippers S, Colgan J, Loch S D, Badnell N R, Chen M H, Gu M F 2006 Astrophys. J. 642 1275
[4] Savin D W, Kahn S M, Gwinner G, Grieser M, Repnow R, Saathoff G, Schwalm D, Wolf A, Muller A, Schippers S, Zavodszky P A, Chen M H, Gorczyca T W, Zatsarinny O, Gu M F 2003 Astrophys. J. Suppl. Ser. 147 421
[5] Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Brandau C, Hoffknecht A, Muller A, Schippers S, Chen M H, Badnell N R 1999 Astrophys. J. Suppl. Ser. 123 687
[6] Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Chen M H, Badnell N R, Gorczyca T W, Zatsarinny O 2002 Astrophys. J. 576 1098
[7] Schmidt E W, Schippers S, Müller A, Lestinsky M, Sprenger F, Grieser M, Repnow R, Wolf A, Brandau C, Lukić D, Schnell M, Savin D W 2006 Astrophys. J. 641 L157
[8] Larsson M 1995 Rep. Prog. Phys. 58 1267
[9] Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143
[10] Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027
[11] Brandau C, Kozhuharov C, Müller A, Shi W, Schippers S, Bartsch T, Böhm S, Böhme C, Hoffknecht A, Knopp H, Grün N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stöhlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202
[12] Lestinsky M, Lindroth E, Orlov D, Schmidt E, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A, Müller A 2008 Phys. Rev. Lett. 100 033001
[13] Brandau C, Kozhuharov C, Harman Z, Müller A, Schippers S, Kozhedub Y, Bernhardt D, Böhm S, Jacobi J, Schmidt E W 2008 Phys. Rev. Lett. 100 073201
[14] Bates D R, Massey H S W 1943 Philos. Trans. Royal Soc. A 239 269
[15] Badnell N R, Pindzola M S, Andersen L H, Bolko J, Schmidt H T 1991 J. Phys. B: At. Mol. Opt. Phys. 24 4441
[16] LaGattuta K, Hahn Y 1981 Phys. Rev. A 24 785
[17] Brooks R, Datla R, Griem H R 1978 Phys. Rev. Lett. 41 107
[18] Müller A, Belić D, DePaola B, Djurić N, Dunn G, Mueller D, Timmer C 1987 Phy. Rev. A 36 599
[19] Schippers S 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 350 61
[20] Brandau C, Kozhuharov C (Shevelko V, Tawara H ed) 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer) pp283-306
[21] Schuch R, Böhm S 2007 J. Phys. Conf. Ser. 88 012002
[22] Huang Z K, Wen W Q, Wang H B, Xu X, Zhu L F, Chuai X Y, Yuan Y J, Zhu X L, Han X Y, Mao L J, Li J, Ma X M, Yan T L, Yang J C, Xiao G Q, Xia J W, Ma X 2015 Phys. Scr. T166 014023
[23] Huang Z, Wang S, Wen W, Wang H, Ma W, Chen C, Zhang C, Chen D, Huang H, Shao L, Liu X, Zhou X, Mao L, Li J, Ma X, Tang M, Yang J, Yuan Y, Zhang S, Zhu L, Ma X 2023 Chin. Phys. B 32 073401
[24] Danared H, Andler G, Bagge L, Herrlander C J, Hilke J, Jeansson J, Källberg A, Nilsson A, Paál A, Rensfelt K G, Rosengård U, Starker J, af Ugglas M 1994 Phys. Rev. Lett. 72 3775
[25] Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001
[26] Brandau C, Kozhuharov C, Harman Z, Müller A, Schippers S, Kozhedub Y S, Bernhardt D, Böhm S, Jacobi J, Schmidt E W, Mokler P H, Bosch F, Kluge H J, Stöhlker T, Beckert K, Beller P, Nolden F, Steck M, Gumberidze A, Reuschl R, Spillmann U, Currell F J, Tupitsyn I I, Shabaev V M, Jentschura U D, Keitel C H, Wolf A, Stachura Z 2008 Phys. Rev. Lett. 100 073201
[27] Schippers S, Schmidt E W, Bernhardt D, Yu D, Muller A, Lestinsky M, Orlov D A, Grieser M, Repnow R, Wolf A 2007 Phys. Rev. Lett. 98 033001
[28] Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235 2
[29] Wang S X, Xu X, Huang Z K, Wen W Q, Wang H B, Khan N, Preval S P, Badnell N R, Schippers S, Mahmood S, Dou L J, Chuai X Y, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Tang M T, Yin D Y, Yang J C, Ma X, Zhu L F 2018 Astrophys. J. 862 2
[30] Wang S X, Huang Z K, Wen W Q, Chen C Y, Schippers S, Xu X, Sardar S, Khan N, Wang H B, Dou L J, Mahmood S, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yuan Y J, Yang J C, Shi Y L, Dong C Z, Ma X W, Zhu L F 2019 Astron. Astrophys. 627 A171
[31] Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808
[32] Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 Phys. Rev. A 102 062823
[33] Shao L, Huang Z-K, Wen W-Q, Wang S-X, Huang H-K, Ma W-L, Liu C, Wang H-B, Chen D-Y, Liu X, Zhou X-P, Zhao D-M, Zhang S-F, Zhu L-F, Ma X-W 2024 Acta Phys. Sin.73 123402 (in Chinese) [邵林, 黄忠魁,汶伟强, 汪书兴, 黄厚科,马万路, 刘畅, 汪寒冰,陈冬阳, 刘鑫, 周晓鹏,赵冬梅, 张少锋, 朱林繁,马新文 2024 物理学报73 123402]
[34] Ma Y G, Zhao H W 2020 Sci. Sin.-Phys. Mech. Astron. 50 112001 (in Chinese) [马余刚,赵红卫 2020 中国科学:物理学 力学 天文学50 112001]
[35] Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhng P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008 (in Chinese) [马新文, 张少锋,汶伟强, 杨杰, 朱小龙,钱东斌, 闫顺成, 张鹏鸣,郭大龙, 汪寒冰, 黄忠魁2020中国科学: 物理学 力学 天文学 50 112008]
[36] Huang Z K, Wen W Q, Xu X, Wang H B, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 135
[37] Håkan D 1995 Phys. Scr. 1995 121
[38] Zaghloul M R 2017 ACM Trans. Math. Softw. 44 Article 22
[39] Dou L, Xie L, Zhang D, Dong C, Wen W, Huang Z, Ma X 2017 Euro. Phys. J. D 71 128
[40] Li C Y, Liu X J, Meng G W, Wang J G 2010 Acta Phys. Sin. 59 6044 (in Chinese) [李传莹, 刘晓菊, 孟广为,王建国 2010 物理学报59 6044]
[41] Danared H 1993 Nucl. Instrum. Methods Phys. Res., Sect. A 335 397
[42] Danared H 1998 Hyperfine Interact. 115 61
[43] Zubova N A, Kozhedub Y S, Shabaev V M, Tupitsyn I I, Volotka A V, Plunien G, Brandau C, Stöhlker T 2014 Phys. Rev. A 90 062512
[44] Chuai X Y, Huang Z K, Wen W Q, Wang H B, Xu X, Wang S X, Li J G, Dou L J, Zhao D M, Zhu X L, Mao L J, Yin D Y, Yang J C, Yuan Y J, Ma X W 2018 Nucl. Phys. Rev.35 196 (in Chinese) [啜晓亚, 黄忠魁,汶伟强, 汪寒冰, 许鑫,汪书兴, 李冀光, 豆丽君,赵冬梅, 朱小龙, 冒立军,殷达钰, 杨建成, 原有进,马新文 2018 原子核物理评论35 196]
计量
- 文章访问数: 153
- PDF下载量: 5
- 被引次数: 0