搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊排列时间不可逆的复杂系统非平衡性分析

姚文坡

引用本文:
Citation:

基于模糊排列时间不可逆的复杂系统非平衡性分析

姚文坡
cstr: 32037.14.aps.74.20241271

Fuzzy permutation time irreversibility for nonequilibrium analysis of complex system

YAO Wenpo
cstr: 32037.14.aps.74.20241271
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 排列时间不可逆性是量化复杂系统非平衡特征的重要方法, 但排列类型无法表征序列的精确结构特征. 本文提出了一种模糊排列时间不可逆(fuzzy permutation time irreversibility, fpTIR)方法, 利用负指数函数转化向量元素差值, 计算向量幅度排列的隶属度, 进而比较正反序列模糊排列的概率分布差异. 作为对照, 通过香农熵计算模糊排列概率分布的平均信息量, 即模糊排列熵(fuzzy permutation entropy, fPEn), 用以衡量系统的复杂度. 本文首先利用logistic和Henon混沌系统以及一阶自回归模型构建测试序列, 通过代替数据理论验证fpTIR和fPEn的有效性, 然后分析PhysioNet数据库中的心衰、健康老年及健康年轻心率的复杂特征. 结果表明, fpTIR可有效表征系统的非平衡性特征, 并且提高了心率信号分析的准确度. 由于fpTIR和fPEn采用不同的概率分布分析方法, 两者在混沌序列验证中存在差异, 甚至在心率信号的分析中出现相反的结果, 其中fpTIR的分析结果与心率复杂度丢失理论一致. 总之, 本文研究不仅精准表征了序列的排列空间结构, 优化了复杂系统非平衡性分析的效果, 而且为从非平衡动力学和熵值复杂度两个角度探索复杂系统特征提供了新的视角和理论依据.
    Permutation time irreversibility is an important method to quantify the nonequilibrium characteristics; however, ordinal pattern is a coarse-graining alternative of temporal structure and cannot accurately represent detailed structural information. In this paper, a fuzzy permutation time irreversibility (fpTIR) is proposed by measuring the difference between vector elements based on a negative exponential function. Amplitude permutation of vector is constructed and its membership degree is calculated, then the difference in probability distribution between the forward sequence and backward sequence is measured for fpTIR. For comparison, Shannon entropy is calculated as the average amount of information in the fuzzy permutation probability distribution, i.e. fuzzy permutation entropy (fPEn), to measure the complexity of the system. According to the surrogate theory, mode series are generated by logistic, Henon, and first-order autoregressive systems to verify the fpTIR, which is then used to analyze heart rates of congestive heart failure, healthy elderly and healthy young subjects from PhysioNet database. The results suggest that fpTIR effectively measures the nonequilibrium characteristic of system and improves the accuracy of heart rate analysis. Since fpTIR and fPEn are different in analyzing probability distributions, they have discrepancies in chaotic series and even opposite results in the heart rate signals, where the results of fpTIR are consistent with theory of complexity loss in aging and disease. In conclusion, the fpTIR not only accurately characterizes the structure of sequences and enhances the effect of the nonequilibrium analysis of complex systems, but also provides a new perspective and theoretical basis for exploring complex systems from the perspectives of nonequilibrium dynamics and entropy complexity.
      通信作者: 姚文坡, yaowpo@hotmail.com
    • 基金项目: 江苏省自然科学基金(批准号: BK20220383)资助的课题.
      Corresponding author: YAO Wenpo, yaowpo@hotmail.com
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220383).
    [1]

    Yao W P 2024 Phys. Rev. E 109 054104Google Scholar

    [2]

    Daw C, Finney C, Tracy E 2003 Rev. Sci. Instrum. 74 915Google Scholar

    [3]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102Google Scholar

    [4]

    Martinez J, Herrera D J, Chavez M 2018 Chaos 28 123111Google Scholar

    [5]

    Zanin M, Rodriguez A, Menasalvas R E, Papo D 2018 Entropy 20 665Google Scholar

    [6]

    Zanin M 2021 Chaos 31 103118Google Scholar

    [7]

    Yao W P, Dai J F, Perc M, Wang J, Yao D Z, Guo D Q 2020 Nonlinear Dyn. 100 907Google Scholar

    [8]

    Yao W P, Yao W L, Xu R, Wang J 2023 Commun. Nonlinear Sci. Numer. Simul. 117 106925Google Scholar

    [9]

    Yao W P, Yao W L, Wang J 2022 Phys. Lett. A 430 127977Google Scholar

    [10]

    Amigo J M, Zambrano S, Sanjuan M A 2010 Int. J. Bifurcation Chaos 20 2915Google Scholar

    [11]

    Amigo J M, Zambrano S, Sanjuan M A 2007 EPL 79 50001Google Scholar

    [12]

    Amigo J M, Kennel M B 2007 Physica D 231 137Google Scholar

    [13]

    Zanin M 2008 Chaos 18 013119Google Scholar

    [14]

    Kulp C W, Zunino L, Osborne T, Zawadzki B 2017 Phys. Rev. E 96 022218Google Scholar

    [15]

    Yao W P, Yao W L, Wang J, Dai J 2019 Phys. Lett. A 383 738Google Scholar

    [16]

    Yao W P, Yao W L, Yao D Z, Guo D Q, Wang J 2020 Appl. Phys. Lett. 116 014101Google Scholar

    [17]

    Yao W P, Yao W L, Wang J 2019 Phys. Lett. A 383 1764Google Scholar

    [18]

    Bian C, Qin C, Ma Q, Shen Q 2012 Phys. Rev. E 85 021906Google Scholar

    [19]

    Zunino L, Olivares F, Scholkmann F, Rosso O A 2017 Phys. Lett. A 381 1883Google Scholar

    [20]

    Cuesta F D, Varela E M, Molina P A, Vargas B 2018 Complexity 2018 1324696Google Scholar

    [21]

    Weiss G 1975 J. Appl. Probab. 12 831Google Scholar

    [22]

    Kelly F P 1979 Reversibility and Stochastic Networks (Chichester: Cambridge University Press) pp5–10

    [23]

    Zadeh L A 1999 Fuzzy Sets Syst. 100 9Google Scholar

    [24]

    Chen W, Wang Z, Xie H B, Yu W X 2007 IEEE Trans. Neural Syst. Rehabil. Eng. 15 266Google Scholar

    [25]

    Rostaghi M, Khatibi M M, Ashory M R, Azami H 2021 IEEE Trans. Fuzzy Syst. 30 3785Google Scholar

    [26]

    姚文坡, 刘铁兵, 戴加飞, 王俊 2014 物理学报 63 078704Google Scholar

    Yao W P, Liu T B, Dai J F, Wang J 2014 Acta Phys. Sin. 63 078704Google Scholar

    [27]

    Schreiber T, Schmitz A 1996 Phys. Rev. Lett. 77 635Google Scholar

    [28]

    Schreiber T, Schmitz A 2000 Physica D 142 346Google Scholar

    [29]

    Goldberger A L, Amaral L A, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Peng C, Stanley H E 2000 Circulation 101 e215Google Scholar

    [30]

    Baim D S, Colucci W S, Monrad E S, Smith, Harton S, Braunwald E 1986 J. Am. Coll. Cardiol. 7 661Google Scholar

    [31]

    Iyengar N, Peng C K, Morin R, Goldberger A L, Lipsitz L A 1996 Am. J. Physiol. 271 R1078Google Scholar

    [32]

    Goldberger A L, Peng C K, Lipsitz L A 2002 Neurobiol. Aging 23 23Google Scholar

    [33]

    Xiong W, Faes L, Ivanov P 2017 Phys. Rev. E 95 062114Google Scholar

  • 图 1  模糊排列时间不可逆的流程图

    Fig. 1.  Flowchart of fuzzy permutation time irreversibility.

    图 2  Logistic, Henon和AR1模型序列及其代替数据的fpTIR和fPEn. 隶属度控制参数$ \alpha $= 1, 向量重构参数为$ m $ = 2—5, $ \tau $ = 1. 图中fpTIR-97.5, fpTIR-2.5, fPEn-97.5和fPEn-2.5分别表示代替数据fpTIR和fPEn的97.5%和2.5%分位数

    Fig. 2.  The fpTIR and fPEn of the logistic, Henon, and AR1 series and their surrogates. Control parameter of membership degree is $ \alpha $ = 1, dimension and delay are $ m $ = 2–5, $ \tau $ = 1. The fpTIR-97.5, fpTIR-2.5, fPEn-97.5 and fPEn-2.5 denote the 97.5% and 2.5% of fpTIR and fPEn of surrogate data.

    图 3  心衰、健康老年和健康年轻心率的fpTIR和pTIR (均值±标准误差), 幅度排列构建维度$ m $ = 2和3、延迟$ \tau $ = 1和2, 模糊排列隶属度$ \alpha $ = 0.1—1 (步长0.1)

    Fig. 3.  The fpTIR and pTIR (mean ± standard error) of the CHF, healthy elderly, and healthy young heartbeats, dimension and delay of amplitude permutations are $ m $ = 2 and 3, $ \tau $ = 1 and 2, $ \alpha$= 0.1–1 with step size of 0.1.

    图 4  心衰、健康老年和健康年轻心率的fpTIR、fPEn和排列概率分布(均值±标准误差), 模糊排列隶属度$ \alpha $ = 0.1 (a), (b) $ m2\tau 1$表示幅度排列维度2、延迟1, 并以此类推; (c), (d) 幅度排列的维度和延迟为$ m $ = 2, $ \tau $ = 2和$ m $ = 3, $ \tau $ = 2

    Fig. 4.  The fpTIR, pTIR and probabilities of permutations (mean ± standard error) of the CHF, healthy elderly, and healthy young heartbeats, in membership degree of amplitude permutations, $ \alpha $ = 0.1: (a), (b) $m2\tau1$ represents dimension of 2 and delay of 1, and so on; (c), (d) dimension and delay of amplitude permutations are $ m $ = 2, $ \tau $ = 2 and $ m $ = 3, $ \tau $ = 2.

  • [1]

    Yao W P 2024 Phys. Rev. E 109 054104Google Scholar

    [2]

    Daw C, Finney C, Tracy E 2003 Rev. Sci. Instrum. 74 915Google Scholar

    [3]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102Google Scholar

    [4]

    Martinez J, Herrera D J, Chavez M 2018 Chaos 28 123111Google Scholar

    [5]

    Zanin M, Rodriguez A, Menasalvas R E, Papo D 2018 Entropy 20 665Google Scholar

    [6]

    Zanin M 2021 Chaos 31 103118Google Scholar

    [7]

    Yao W P, Dai J F, Perc M, Wang J, Yao D Z, Guo D Q 2020 Nonlinear Dyn. 100 907Google Scholar

    [8]

    Yao W P, Yao W L, Xu R, Wang J 2023 Commun. Nonlinear Sci. Numer. Simul. 117 106925Google Scholar

    [9]

    Yao W P, Yao W L, Wang J 2022 Phys. Lett. A 430 127977Google Scholar

    [10]

    Amigo J M, Zambrano S, Sanjuan M A 2010 Int. J. Bifurcation Chaos 20 2915Google Scholar

    [11]

    Amigo J M, Zambrano S, Sanjuan M A 2007 EPL 79 50001Google Scholar

    [12]

    Amigo J M, Kennel M B 2007 Physica D 231 137Google Scholar

    [13]

    Zanin M 2008 Chaos 18 013119Google Scholar

    [14]

    Kulp C W, Zunino L, Osborne T, Zawadzki B 2017 Phys. Rev. E 96 022218Google Scholar

    [15]

    Yao W P, Yao W L, Wang J, Dai J 2019 Phys. Lett. A 383 738Google Scholar

    [16]

    Yao W P, Yao W L, Yao D Z, Guo D Q, Wang J 2020 Appl. Phys. Lett. 116 014101Google Scholar

    [17]

    Yao W P, Yao W L, Wang J 2019 Phys. Lett. A 383 1764Google Scholar

    [18]

    Bian C, Qin C, Ma Q, Shen Q 2012 Phys. Rev. E 85 021906Google Scholar

    [19]

    Zunino L, Olivares F, Scholkmann F, Rosso O A 2017 Phys. Lett. A 381 1883Google Scholar

    [20]

    Cuesta F D, Varela E M, Molina P A, Vargas B 2018 Complexity 2018 1324696Google Scholar

    [21]

    Weiss G 1975 J. Appl. Probab. 12 831Google Scholar

    [22]

    Kelly F P 1979 Reversibility and Stochastic Networks (Chichester: Cambridge University Press) pp5–10

    [23]

    Zadeh L A 1999 Fuzzy Sets Syst. 100 9Google Scholar

    [24]

    Chen W, Wang Z, Xie H B, Yu W X 2007 IEEE Trans. Neural Syst. Rehabil. Eng. 15 266Google Scholar

    [25]

    Rostaghi M, Khatibi M M, Ashory M R, Azami H 2021 IEEE Trans. Fuzzy Syst. 30 3785Google Scholar

    [26]

    姚文坡, 刘铁兵, 戴加飞, 王俊 2014 物理学报 63 078704Google Scholar

    Yao W P, Liu T B, Dai J F, Wang J 2014 Acta Phys. Sin. 63 078704Google Scholar

    [27]

    Schreiber T, Schmitz A 1996 Phys. Rev. Lett. 77 635Google Scholar

    [28]

    Schreiber T, Schmitz A 2000 Physica D 142 346Google Scholar

    [29]

    Goldberger A L, Amaral L A, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Peng C, Stanley H E 2000 Circulation 101 e215Google Scholar

    [30]

    Baim D S, Colucci W S, Monrad E S, Smith, Harton S, Braunwald E 1986 J. Am. Coll. Cardiol. 7 661Google Scholar

    [31]

    Iyengar N, Peng C K, Morin R, Goldberger A L, Lipsitz L A 1996 Am. J. Physiol. 271 R1078Google Scholar

    [32]

    Goldberger A L, Peng C K, Lipsitz L A 2002 Neurobiol. Aging 23 23Google Scholar

    [33]

    Xiong W, Faes L, Ivanov P 2017 Phys. Rev. E 95 062114Google Scholar

  • [1] 张海峰, 王文旭. 复杂系统重构. 物理学报, 2020, 69(8): 088906. doi: 10.7498/aps.69.20200001
    [2] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, 69(7): 070201. doi: 10.7498/aps.69.20191591
    [3] 董成伟. 非扩散洛伦兹系统的周期轨道. 物理学报, 2018, 67(24): 240501. doi: 10.7498/aps.67.20181581
    [4] 张宏, 丁炯, 童勤业, 程千流. 双耳幅值差确定声源方向的神经信息处理机理研究. 物理学报, 2015, 64(18): 188701. doi: 10.7498/aps.64.188701
    [5] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [6] 姚文坡, 刘铁兵, 戴加飞, 王俊. 脑电信号的多尺度排列熵分析. 物理学报, 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [7] 黄晓林, 霍铖宇, 司峻峰, 刘红星. 等概率符号化样本熵应用于脑电分析. 物理学报, 2014, 63(10): 100503. doi: 10.7498/aps.63.100503
    [8] 徐红梅, 金永镐, 金璟璇. 基于符号动力学的开关变换器时间不可逆性分析. 物理学报, 2014, 63(13): 130502. doi: 10.7498/aps.63.130502
    [9] 张梅, 王俊. 基于改进的符号相对熵的脑电信号时间不可逆性研究. 物理学报, 2013, 62(3): 038701. doi: 10.7498/aps.62.038701
    [10] 陈冲, 丁炯, 张宏, 陈琢. 累积放电模型及其符号动力学研究. 物理学报, 2013, 62(14): 140502. doi: 10.7498/aps.62.140502
    [11] 丁炯, 张宏, 童勤业. 蝙蝠听觉神经系统如何在复杂环境中识别昆虫. 物理学报, 2012, 61(15): 150505. doi: 10.7498/aps.61.150505
    [12] 沈韡, 王俊. 基于符号相对熵的心电信号时间不可逆性分析. 物理学报, 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [13] 王福来. 基于复合符号混沌的伪随机数生成器及加密技术. 物理学报, 2011, 60(11): 110517. doi: 10.7498/aps.60.110517
    [14] 宋爱玲, 黄晓林, 司峻峰, 宁新宝. 符号动力学在心率变异性分析中的参数选择. 物理学报, 2011, 60(2): 020509. doi: 10.7498/aps.60.020509
    [15] 沈民奋, 林兰馨, 李小艳, 常春起. 基于符号动力学的耦合映像格子系统的初值估计. 物理学报, 2009, 58(5): 2921-2929. doi: 10.7498/aps.58.2921
    [16] 刘小峰, 俞文莉. 基于符号动力学的认知事件相关电位的复杂度分析. 物理学报, 2008, 57(4): 2587-2594. doi: 10.7498/aps.57.2587
    [17] 王学梅, 张 波, 丘东元, 陈良刚. DC-DC变换器的符号时间序列描述及模块熵分析. 物理学报, 2008, 57(10): 6112-6119. doi: 10.7498/aps.57.6112
    [18] 王 开, 裴文江, 夏海山, 何振亚. 基于符号向量动力学的耦合映像格子初始向量估计. 物理学报, 2007, 56(7): 3766-3770. doi: 10.7498/aps.56.3766
    [19] 侯 威, 封国林, 董文杰, 李建平. 利用排列熵检测近40年华北地区气温突变的研究. 物理学报, 2006, 55(5): 2663-2668. doi: 10.7498/aps.55.2663
    [20] 肖方红, 阎桂荣, 韩宇航. 混沌伪随机序列复杂度分析的符号动力学方法. 物理学报, 2004, 53(9): 2876-2881. doi: 10.7498/aps.53.2876
计量
  • 文章访问数:  438
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 修回日期:  2024-12-08
  • 上网日期:  2024-12-25
  • 刊出日期:  2025-02-20

/

返回文章
返回