搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界Lennard-Jones流体结构特性分子动力学研究

王艳 徐进良 李文 刘欢

引用本文:
Citation:

超临界Lennard-Jones流体结构特性分子动力学研究

王艳, 徐进良, 李文, 刘欢

Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids

Wang Yan, Xu Jin-Liang, Li Wen, Liu Huan
PDF
HTML
导出引用
  • 研究超临界流体在不同压力和温度的结构特征有助于深刻理解并有效利用超临界流体. 本文采用分子动力学方法模拟超临界压力、拟临界温度附近流体的结构及密度波动曲线的排列熵, 分析状态参数变化的影响. 结果表明, 定压下, 径向分布函数随温度升高, 第一峰值位置逐渐向右移动, 但右移幅度随着压力偏离临界点距离的增大而减弱, 近临界压力时, 出现峰值最高点的工况和等温压缩系数的极值点位置一致, 压力增大, 该现象消失. 低压力拟临界点时易出现面积大、相对集中且分布稳定的高/低密度区, 无明显嵌套现象. 静态结构因子存在一定发散行为, 发散的最大值和等温压缩系数极值点所处工况符合. 低压力时密度时间序列的波动幅度最大, 类周期现象较明显. 在分子间势能、等温压缩系数和热运动效应的共同作用下, 当压力(P)为1.1倍的临界压力(Pc)时, 排列熵在0.99倍的拟临界温度(Tpc)达到最小值, P = 1.3Pc和1.5Pc时, 最小排列熵与等温压缩系数的最大值工况点保持一致, 压力继续增大, 各模拟工况密度和排列熵的波动减弱, 流体均匀性增强.
    Supercritical fluids (SCF) have been widely utilized in the industrial processes, such as extraction, cleaning, drying, foaming and power generation driven by primary energy. Therefore, SCF have attracted more and more attention in recent years. At supercritical state, liquid, and gas phase are not clearly distinguished, but the thermal-physical properties of fluid show an interesting characteristic, especially near the pseudo-critical temperature. Thus, it is of great significant to study the structure and density time series evolution of SCF.Due to high pressure and temperature for SCF, it can be challenging to collect experimental data of SCF. However, the advantage of molecular dynamics simulation in convenience, safty and cost over experiments. Therefore, in this paper,molecular dynamics simulation was performed to investigate the fluid structure and density series fluctuation curves at supercritical state, and the influence of parameters varitation including pressure and temperature onstructural characteristics was analyzed. In the simulation system, more than 104 atoms and simple Lennard-Jones(LJ) supercritical fluids were contained. The radial distribution function(RDF), coordination number(CN), density time series curve and permutation entropy of fluids at different pressures and temperatures were calculated. At specified pressure, the position of the first peak value of RDF gradually moves to the right with the increase of temperature, and the trend weakens with the increase of pressure. CN shows a downward trend with the increase of pressure and the CN difference at different temperatures gradually decreases. Simultaneously, the CN distribution area becomes narrow with the increase of pressure. The high/low density region calibrated by CN is stable, concentrated and large area distribution at low pressure, and the average density region is small, with the increase of pressure, the area of high/low density region is only a size of a few molecular and fluctuates sharply with time, and the area of average region is constantly expanding. At relatively low pressure, the density time series curve shows the characteristic that both the fluctuation range and quasi-period are large at pseudo-critical temperature. Simultaneously, the permutation entropy obtained from the time series curve shows three cases: (i) at low pressure (P = 1.1Pc), the minimum permutation entropy is obtained under the temperature that is lower than pseudo-critical temperature, and the system has higher orderliness; (ii) at moderate pressure (P = 1.3Pc and 1.5Pc), the state points corresponding to minimum permutation entropy is consistent with that corresponding to the maximum of isothermal compression coefficient and (iii) at high pressure (P = 2.0Pc), the permutation entropy curve fluctuates slightly and remains basically on the horizontal line. The results provide reliable support for revealing the characteristics of SCF from the microscale, and also provide useful inspiration for the practical application of SCF.
      通信作者: 徐进良, xjl@ncepu.edu.cn
    • 基金项目: 国际级-相变传热装置多尺度协同性及构造(51436004)
      Corresponding author: Xu Jin-Liang, xjl@ncepu.edu.cn
    [1]

    Pena-Pereira F, Tobiszewski M 2017 Elsevier 155

    [2]

    Carlès P 2010 J. Supercrit. Fluids 53 2Google Scholar

    [3]

    Raju M, BanutiD T, MaP C, Ihme M 2017 Sci. Rep.-UK 7 3027Google Scholar

    [4]

    Artemenko S, Krijgsman P, Mazur V 2017 J. Mol. Liq. 238 122Google Scholar

    [5]

    Brazhkin V V, Fomin Y D, Lyapin A G, Lyapin V V, Ryzhov V N, TsiokE N, Trachenko Kostya 2013 Phys. Rev. Lett. 111 145901Google Scholar

    [6]

    Fomin Y D, Ryzhov V N, Tsiok E N, Brazhkin V V 2015 Sci.Rep.-UK 5 14234Google Scholar

    [7]

    Banuti D T, Raju M, Ihme M 2017 Cent. Turbul. Res. Annu. Res. Briefs 165

    [8]

    Banuti D T 2015 J.Supercrit.Fluids. 98 12Google Scholar

    [9]

    Raman A S, Li H, Chiew Y C 2018 J. Chem. Phys. 148 014502Google Scholar

    [10]

    Nichele J, Abreu C R A, Alves L S B, Jr I B 2018 J.Supercrit.Fluids. 135 225Google Scholar

    [11]

    Nichele J, de Oliveira A B, Alves L S B, Borges I 2017 J. Mol.Liq. 237 65Google Scholar

    [12]

    Egorov S A 2002 Chem. Phys. Lett. 354 140Google Scholar

    [13]

    Skarmoutsos I, Samios J 2007 J. Chem. Phys. 126 044503Google Scholar

    [14]

    Skarmoutsos I, Samios J 2006 J. Phys. Chem. B 110 21931Google Scholar

    [15]

    Yoshii N, Okazaki S 1998 Fluid PhaseEquilib. 144 225

    [16]

    Yoshii N, Okazaki S 1997 J. Chem. Phys. 107 2020Google Scholar

    [17]

    Metatla N, Lafond F, Jay-Gerin J P, Soldera A 2016 Rsc. Adv. 6 30484Google Scholar

    [18]

    Maddox M W, Goodyear G, Tucker S C 2000 J. Phys. Chem. B 104 6248Google Scholar

    [19]

    Yamane A, Shimojo F, Hoshino K 2006 J. Phys. Soc.Jpn. 75 124602Google Scholar

    [20]

    Nishikawa K, Arai A A, Morita T 2004 J.Supercrit.Fluids. 30 249Google Scholar

    [21]

    Nishikawa K, Ochiai H, Saitow K, Morita T 2003 Chem. Phys. 286 421Google Scholar

    [22]

    Cabaço M I, Besnard M, Tassaing T, Danten Y 2004 Pure Appl. Chem. 76 141Google Scholar

    [23]

    Arai A A, Morita T, Nishikawa K 2007 Fluid Phase Equilibria. 252 114Google Scholar

    [24]

    Ghosh K, Krishnamurthy C V 2018 Phys. Rev. E 97 012131

    [25]

    陈正隆, 徐为人, 汤立达 2007 分子模拟的理论与实践 (北京: 化学工业出版社) 第110−112页

    Chen Z L, Xu W R, Tang L D 2007 (Beijing: Chemical Industry Press) pp110−112 (in Chinese)

    [26]

    Bolmatov D, Brazhkin V V, Fomin Y D, Ryzhov V N, Trachenko K 2013 J. Chem. Phys. 139 234501Google Scholar

    [27]

    吴方棣, 郑辉东, 刘俊劭, 郑细鸣 2014 辽宁石油化工大学学报 34 8Google Scholar

    Wu F K, Zheng H D, Liu J X, Zheng X M 2014 Journal of Liaoning Shihua University 34 8Google Scholar

    [28]

    Skarmoutsos I, Guardia E, Samios J 2017 J.Supercrit.Fluids. 130 156Google Scholar

    [29]

    计伟荣 1993 浙江工业大学学报 59 1

    Ji W R 1993 Journal of Zhejiang University of Technology 59 1

    [30]

    Martinez H L, Ravi R, Tucker S C 1996 J. Chem. Phys. 104 1067Google Scholar

    [31]

    于渌, 郝柏林, 陈晓松 2016 边缘奇迹:相变和临界现象 (北京: 科学出版社) 第81−93页

    Yu L, Hao B L, Chen X S 2016 (Beijing: Science Press) pp81−93 (in Chinese)

    [32]

    March N H, Tosi M P 2002 (Singapore: World Scientific) pp75−80

    [33]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102Google Scholar

  • 图 1  (a) 物理模型图; (b) 模拟状态点在相图中的分布

    Fig. 1.  (a) Physical model of system; (b) simulation points on phase diagram with Widom line, liquid-like and gas-like region.

    图 2  (a) 定压比热容(cp)变化曲线; (b) 等温压缩系数(kT)变化曲线

    Fig. 2.  (a) The curve of cp under different pressures; (b) the curve of kT under different pressures.

    图 3  径向分布函数 (a) P = 1.1Pc; (b) P = 1.3Pc; (c) P = 1.5Pc; (d) P = 2.0Pc

    Fig. 3.  Radial distribution function: (a) P = 1.1Pc; (b) P = 1.3Pc; (c) P = 1.5Pc; (d) P = 2.0Pc.

    图 4  配位数 (a) P = 1.1Pc; (b) P = 1.3Pc; (c) P = 1.5Pc; (d) P = 2.0Pc

    Fig. 4.  Coordination number: (a) P = 1.1Pc; (b) P = 1.3Pc; (c) P = 1.5Pc; (d) P = 2.0Pc.

    图 5  配位数曲线斜率

    Fig. 5.  The slope of coordination number curve.

    图 6  流体在xy平面内高/低密度区分布随时间的演化 (a) P = 1.1Pc, T = Tpc; (b) P = 2.0Pc, T = Tpc

    Fig. 6.  Liqud atoms evolution over the xy plane with different pressure: (a) P = 1.1Pc, T = Tpc; (b) P = 2.0Pc, T = Tpc.

    图 7  不同压力下, 拟临界点温度下高/低密度区占比 (a) 高密度区占比; (b) 低密度区占比

    Fig. 7.  The ratio of high/low density region at pseudo-critical point temperature under different pressure: (a) The ratio of high density region; (b) the ratio of low density region.

    图 8  静态结构因子 (a) P = 1.1Pc; (b) P = 1.3Pc; (c) P = 1.5Pc; (d) P = 2.0Pc

    Fig. 8.  Static structure fator: (a) P = 1.1Pc; (b) P = 1.3Pc; (c) P = 1.5Pc; (d) P = 2.0Pc.

    图 9  (a) 密度时间序列曲线 ( T = Tpc); (b) 排列熵

    Fig. 9.  (a) Time series of density for T = Tpc; (b) permutation entropy.

  • [1]

    Pena-Pereira F, Tobiszewski M 2017 Elsevier 155

    [2]

    Carlès P 2010 J. Supercrit. Fluids 53 2Google Scholar

    [3]

    Raju M, BanutiD T, MaP C, Ihme M 2017 Sci. Rep.-UK 7 3027Google Scholar

    [4]

    Artemenko S, Krijgsman P, Mazur V 2017 J. Mol. Liq. 238 122Google Scholar

    [5]

    Brazhkin V V, Fomin Y D, Lyapin A G, Lyapin V V, Ryzhov V N, TsiokE N, Trachenko Kostya 2013 Phys. Rev. Lett. 111 145901Google Scholar

    [6]

    Fomin Y D, Ryzhov V N, Tsiok E N, Brazhkin V V 2015 Sci.Rep.-UK 5 14234Google Scholar

    [7]

    Banuti D T, Raju M, Ihme M 2017 Cent. Turbul. Res. Annu. Res. Briefs 165

    [8]

    Banuti D T 2015 J.Supercrit.Fluids. 98 12Google Scholar

    [9]

    Raman A S, Li H, Chiew Y C 2018 J. Chem. Phys. 148 014502Google Scholar

    [10]

    Nichele J, Abreu C R A, Alves L S B, Jr I B 2018 J.Supercrit.Fluids. 135 225Google Scholar

    [11]

    Nichele J, de Oliveira A B, Alves L S B, Borges I 2017 J. Mol.Liq. 237 65Google Scholar

    [12]

    Egorov S A 2002 Chem. Phys. Lett. 354 140Google Scholar

    [13]

    Skarmoutsos I, Samios J 2007 J. Chem. Phys. 126 044503Google Scholar

    [14]

    Skarmoutsos I, Samios J 2006 J. Phys. Chem. B 110 21931Google Scholar

    [15]

    Yoshii N, Okazaki S 1998 Fluid PhaseEquilib. 144 225

    [16]

    Yoshii N, Okazaki S 1997 J. Chem. Phys. 107 2020Google Scholar

    [17]

    Metatla N, Lafond F, Jay-Gerin J P, Soldera A 2016 Rsc. Adv. 6 30484Google Scholar

    [18]

    Maddox M W, Goodyear G, Tucker S C 2000 J. Phys. Chem. B 104 6248Google Scholar

    [19]

    Yamane A, Shimojo F, Hoshino K 2006 J. Phys. Soc.Jpn. 75 124602Google Scholar

    [20]

    Nishikawa K, Arai A A, Morita T 2004 J.Supercrit.Fluids. 30 249Google Scholar

    [21]

    Nishikawa K, Ochiai H, Saitow K, Morita T 2003 Chem. Phys. 286 421Google Scholar

    [22]

    Cabaço M I, Besnard M, Tassaing T, Danten Y 2004 Pure Appl. Chem. 76 141Google Scholar

    [23]

    Arai A A, Morita T, Nishikawa K 2007 Fluid Phase Equilibria. 252 114Google Scholar

    [24]

    Ghosh K, Krishnamurthy C V 2018 Phys. Rev. E 97 012131

    [25]

    陈正隆, 徐为人, 汤立达 2007 分子模拟的理论与实践 (北京: 化学工业出版社) 第110−112页

    Chen Z L, Xu W R, Tang L D 2007 (Beijing: Chemical Industry Press) pp110−112 (in Chinese)

    [26]

    Bolmatov D, Brazhkin V V, Fomin Y D, Ryzhov V N, Trachenko K 2013 J. Chem. Phys. 139 234501Google Scholar

    [27]

    吴方棣, 郑辉东, 刘俊劭, 郑细鸣 2014 辽宁石油化工大学学报 34 8Google Scholar

    Wu F K, Zheng H D, Liu J X, Zheng X M 2014 Journal of Liaoning Shihua University 34 8Google Scholar

    [28]

    Skarmoutsos I, Guardia E, Samios J 2017 J.Supercrit.Fluids. 130 156Google Scholar

    [29]

    计伟荣 1993 浙江工业大学学报 59 1

    Ji W R 1993 Journal of Zhejiang University of Technology 59 1

    [30]

    Martinez H L, Ravi R, Tucker S C 1996 J. Chem. Phys. 104 1067Google Scholar

    [31]

    于渌, 郝柏林, 陈晓松 2016 边缘奇迹:相变和临界现象 (北京: 科学出版社) 第81−93页

    Yu L, Hao B L, Chen X S 2016 (Beijing: Science Press) pp81−93 (in Chinese)

    [32]

    March N H, Tosi M P 2002 (Singapore: World Scientific) pp75−80

    [33]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102Google Scholar

  • [1] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [2] 何孝天, 徐进良, 程怡玮. 光纤探针测量及多尺度熵鉴别超临界类沸腾传热模式. 物理学报, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [3] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [4] 周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤. 锆铌合金的特殊准随机结构模型的分子动力学研究. 物理学报, 2021, 70(3): 033103. doi: 10.7498/aps.70.20201407
    [5] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [6] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [7] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [8] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [9] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [10] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [11] 邓真渝, 翁乐纯, 张冬, 何林李, 章林溪. 熵驱动下柱状高分子刷螺旋结构的研究. 物理学报, 2014, 63(1): 018201. doi: 10.7498/aps.63.018201
    [12] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [13] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析. 物理学报, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [14] 李勇, 刘锦超, 芦鹏飞, 杨向东. 从常温常压到超临界乙醇的分子动力学模拟. 物理学报, 2010, 59(7): 4880-4887. doi: 10.7498/aps.59.4880
    [15] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [16] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [17] 杨全文, 朱如曾, 文玉华. 纳米铜团簇在常温和升温过程中能量特征的分子动力学研究. 物理学报, 2005, 54(1): 89-95. doi: 10.7498/aps.54.89
    [18] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
计量
  • 文章访问数:  10453
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-21
  • 修回日期:  2020-02-09
  • 刊出日期:  2020-04-05

/

返回文章
返回