搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究

闻鹏 陶钢

引用本文:
Citation:

温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究

闻鹏, 陶钢

Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys

Wen Peng, Tao Gang
PDF
HTML
导出引用
  • 高熵合金作为一类新兴合金材料, 由于其优异的力学性能, 在航空、航天、军事等领域具有广阔的应用前景. 本文利用分子动力学方法, 探讨了温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制的影响. 研究发现, 初始温度的增加使得冲击压力、冲击波传播速度和冲击温升下降. 冲击Hugoniot弹性极限随着温度的上升线性下降. 随着冲击强度的增加, CoCrFeMnNi 高熵合金发生了复杂的塑性变形, 包括位错滑移、相变、变形孪晶和冲击诱导非晶化. 在较高的初始温度下, CoCrFeMnNi 高熵合金内部出现无序团簇, 其和由面心立方晶体结构转变而成的体心立方晶体结构以及无序结构是位错成核的重要来源. 由于Mn元素具有相对较大的原子体积和势能, 所以在Mn元素的周围会出现较大的晶格畸变和局部应力, 从而为冲击诱导塑性变形提供较大的贡献. 在温度较高时, Fe元素对塑性变形的贡献和Mn元素一样重要. 研究结果有助于深刻理解CoCrFeMnNi高熵合金的冲击诱导塑性和相关变形机制, 为CoCrFeMnNi高熵合金在不同温度下涉及高应变率冲击过程的应用提供理论支撑.
    High-entropy alloys have broad application prospects in aviation, aerospace, military and other fields due to their excellent mechanical properties. Temperature is an important external factor affecting the shock response of high-entropy alloys. In this paper, we investigate the effects of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys by using molecular dynamics method. The effects of temperature on the atomic volume and the radial distribution function of CoCrFeMnNi high-entropy alloy are studied. Then, the piston method is used to generate shock waves in the sample to study the shock response of CoCrFeMnNi high-entropy alloy. We observe the evolution of atomic-scale defects during the shock compression by the polyhedral template matching method. The results show that the shock pressure, the shock wave propagation velocity, and the rising of shock-induced temperature all decrease with the initial temperature increasing. For example, when piston velocity Up = 1.5 km/s, the shock pressure at an initial temperature of 1000 K decreases by 6.7% in comparison with that at 1 K. Moreover, the shock Hugoniot elastic limit decreases linearly with the increase of temperature. The Hugoniot Up-Us curve of CoCrFeMnNi HEA in the plastic stage can be linearly fitted by the formula Us = c0 + sUp, where c0 decreases with temperature increasing. As the shock intensity increases, the CoCrFeMnNi high-entropy alloy undergoes complex plastic deformation, including dislocation slip, phase transformation, deformation twinning, and shock-induced amorphization. At relatively high initial temperature, disordered clusters appear inside CoCrFeMnNi HEA, which together with the BCC (body-centered cubic) structure transformed from FCC (face-centered cubic) and disordered structure are significant dislocation nucleation sources. Compared with other elements, Mn element accounts for the largest proportion (25.4%) in disordered cluster. Owing to the large atomic volume and potential energy, large lattice distortion and local stress occur around the Mn-rich element, which makes a dominant contribution to shock-induced plastic deformation. At high temperatures, the contribution of Fe element to plastic deformation is as important as that of Mn element. The research results are conducive to understanding the shock-induced plasticity and deformation mechanisms of CoCrFeMnNi high-entropy alloys in depth.
      通信作者: 闻鹏, wenpeng@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11802139)资助的课题.
      Corresponding author: Wen Peng, wenpeng@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11802139).
    [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375–377 213Google Scholar

    [3]

    Li Z, Zhao S, Ritchie R O, Meyers M A 2019 Prog. Mater. Sci. 102 296Google Scholar

    [4]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [5]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [6]

    Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw P K 2021 Prog. Mater. Sci. 118 100777Google Scholar

    [7]

    王睿鑫, 唐宇, 李顺, 白书欣 2021 材料导报 35 17001Google Scholar

    Wang R X, Tang Y, Li S, Bai S X 2021 Mater. Rep. 35 17001Google Scholar

    [8]

    李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 333Google Scholar

    Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. Appl. Mech. 52 333Google Scholar

    [9]

    陈海华, 张先锋, 刘闯, 林琨富, 熊玮, 谈梦婷 2021 爆炸与冲击 41 1Google Scholar

    Chen H H, Zhang X F, Liu C, Lin K F, Xiong W 2021 Explo. Shock Waves 41 1Google Scholar

    [10]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar

    [11]

    Jiao Z M, Ma S G, Chu M Y, Yang H J, Wang Z H, Zhang Y, Qiao J W 2016 J. Mater. Eng. Perform. 25 451Google Scholar

    [12]

    Kumar N, Ying Q, Nie X, Mishra R S, Tang Z, Liaw P K, Brennan R E, Doherty K J, Cho K C 2015 Mater. Des. 86 598Google Scholar

    [13]

    Qiao Y, Chen Y, Cao F H, Wang H Y, Dai L H 2021 Int. J. Impact Eng. 158 104008Google Scholar

    [14]

    Jiang Z J, He J Y, Wang H Y, Zhang H S, Lu Z P, Dai L H 2016 Mater. Res. Lett. 4 226Google Scholar

    [15]

    Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020 Acta Mater. 186 257Google Scholar

    [16]

    Chen H, Zhang X, Xiong W, Liu C, Wei H, Wang H, Dai L 2020 Chin. J. Theor. Appl. Mech. 52 1443Google Scholar

    [17]

    Zhang Z, Zhang H, Tang Y, Zhu L, Ye Y, Li S, Bai S 2017 Mater. Des. 133 435Google Scholar

    [18]

    Zhang T W, Jiao Z M, Wang Z H, Qiao J W 2017 Scr. Mater. 136 15Google Scholar

    [19]

    Wen P, Tao G, Spearot D E, Phillpot S R 2022 J. Appl. Phys. 131 051101Google Scholar

    [20]

    Zhao L, Zong H, Ding X, Lookman T 2021 Acta Mater. 209 116801Google Scholar

    [21]

    Xie Z, Jian W R, Xu S, Beyerlein I J, Zhang X, Wang Z, Yao X 2021 Acta Mater. 221 117380Google Scholar

    [22]

    Jian W R, Xie Z, Xu S, Yao X, Beyerlein I J 2022 Scr. Mater. 209 114379Google Scholar

    [23]

    Thürmer D, Gunkelmann N 2022 J. Appl. Phys. 131 065902Google Scholar

    [24]

    Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M, Gunkelmann N 2022 J. Alloys Compd. 895 162567Google Scholar

    [25]

    Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S, Yuan D 2022 Int. J. Mech. Sci. 226 107373Google Scholar

    [26]

    Singh S K, Parashar A 2022 Comput. Mater. Sci. 209 111402Google Scholar

    [27]

    Huang S, Li W, Lu S, Tian F, Shen J, Holmström E, Vitos L 2015 Scr. Mater. 108 44Google Scholar

    [28]

    Fu J X, Cao C M, Tong W, Hao Y X, Peng L M 2017 Mater. Sci. Eng. , A 690 418Google Scholar

    [29]

    Kawamura M, Asakura M, Okamoto N L, Kishida K, Inui H, George E P 2021 Acta Mater. 203 116454Google Scholar

    [30]

    Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George E P 2015 J. Alloys Compd. 623 348Google Scholar

    [31]

    Laplanche G, Gadaud P, Bärsch C, Demtröder K, Reinhart C, Schreuer J, George E P 2018 J. Alloys Compd. 746 244Google Scholar

    [32]

    Haglund A, Koehler M, Catoor D, George E P, Keppens V 2015 Intermetallics 58 62Google Scholar

    [33]

    Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 npj Comput. Mater. 4 1Google Scholar

    [34]

    Fang Q, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar

    [35]

    Alabd Alhafez I, Ruestes C J, Bringa E M, Urbassek H M 2019 J. Alloys Compd. 803 618Google Scholar

    [36]

    Goede A, Preissner R, Frömmel C 1997 J. Comput. Chem. 18 1113Google Scholar

    [37]

    Holian B L, Lomdahl P S 1998 Science 280 2085Google Scholar

    [38]

    Hahn E N, Germann T C, Ravelo R, Hammerberg J E, Meyers M A 2017 Acta Mater. 126 313Google Scholar

    [39]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [40]

    Larsen P M, Schmidt S, Schiotz J 2016 Modell. Simul. Mater. Sci. Eng. 24 055007Google Scholar

    [41]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 15012Google Scholar

    [42]

    Luo G, Huang S, Hu J, Zhu Y, Wang J, Yang G, Zhang R, Sun Y, Zhang J, Shen Q 2022 AIP Adv. 12 055123Google Scholar

    [43]

    Tian X, Cui J, Ma K, Xiang M 2020 Int. J. Heat Mass Transfer 158 120013Google Scholar

    [44]

    Wang Y, Zeng X, Yang X, Xu T 2022 Comput. Mater. Sci. 201 110870Google Scholar

    [45]

    Wen P, Demaske B, Spearot D E, Phillpot S R, Tao G 2021 J. Appl. Phys. 129 165103Google Scholar

    [46]

    Sharma S M, Turneaure S J, Winey J M, Gupta Y M 2020 Phys. Rev. B 102 020103Google Scholar

  • 图 1  (a) 小尺寸CoCrFeMnNi高熵合金模型; (b) 大尺寸CoCrFeMnNi高熵合金冲击压缩过程图

    Fig. 1.  CoCrFeMnNi HEA model: (a) Small size; (b) big size for shock compression.

    图 2  温度对CoCrFeMnNi 高熵合金的影响 (a) 径向分布函数; (b) 原子体积

    Fig. 2.  Effect of temperature on (a) RDFs and (b) atomic volume of CoCrFeMnNi HEA.

    图 3  初始温度为1 K时, 不同Up下沿z方向上的 (a) Pzz和(b) Psh

    Fig. 3.  (a) Pzz and (b) Psh along the z-direction for different Up at an initial temperature of 1 K.

    图 4  Up = 1.5 km/s时, 初始温度对 (a) 冲击压力Pzz、 (b) 剪切应力Psh和 (c) 温度的影响

    Fig. 4.  Effects of initial temperature on (a) shock pressure, (b) shear stress and (c) temperature when Up = 1.5 km/s.

    图 5  不同初始温度下的 (a) Up-Us曲线, 以及(b) 拟合参数c0s

    Fig. 5.  (a) Shock Hugoniot Up-Us curves and (b) fitting parameters c0 and s at different initial temperatures.

    图 6  (a) 流动应力Pflow随冲击压力Pzz的变化; (b) PHEL随温度的变化

    Fig. 6.  (a) Flow stress Pflow as a function of shock pressure Pzz; (b) PHEL as a function of temperature.

    图 7  不同初始温度下的冲击温升曲线

    Fig. 7.  Shock-induced temperature rise at different initial temperatures.

    图 8  典型Up时不同初始温度下的缺陷结构特征

    Fig. 8.  Defect structure characteristics at different initial temperatures for typical Up.

    图 9  典型Up时不同初始温度下的结构含量随时间的变化 (a) Up = 0.65 km/s, T = 1 K; (b) Up = 1.0 km/s, T = 1 K; (c) Up = 1.5 km/s, T = 1 K; (d) Up = 0.65 km/s, T = 1000 K; (e) Up = 1.0 km/s, T = 1000 K; (f) Up = 1.5 km/s, T = 1000 K

    Fig. 9.  Atomic fraction of FCC, BCC, HCP and disordered structures as a function of the shocked time at different initial temperatures for typical Up: (a) Up = 0.65 km/s, T = 1 K; (b) Up = 1.0 km/s, T = 1 K; (c) Up = 1.5 km/s, T = 1 K; (d) Up = 0.65 km/s, T = 1000 K; (e) Up = 1.0 km/s, T = 1000 K; (f) Up = 1.5 km/s, T = 1000 K.

    图 10  Up = 1.0 km/s时, 初始温度为 (a) 1和 (b) 1000 K时不同元素在不同结构中的占比

    Fig. 10.  When Up is 1.0 km/s, proportions of Co, Ni, Cr, Fe and Mn with FCC, BCC, HCP and disordered structures as a function of the shocked time at initial temperatures of (a) 1 and (b) 1000 K.

    图 11  不同原子对之间的势能和原子间距之间的关系[33]

    Fig. 11.  Potential energy as a function of interatomic spacing[33].

    图 12  不同冲击压力和温度下, CoCrFeMnNi 高熵合金的变形机制

    Fig. 12.  Deformation mechanisms of CoCrFeMnNi HEA under different shock pressures and temperatures.

    图 13  不同变形机制的演化示意图 (a) 位错滑移; (b)相变; (c)变形孪晶; (d)非晶化

    Fig. 13.  Schematic diagram of different deformation mechanisms: (a) Dislocation slip; (b) phase transition; (c) deformation twinning; (d) amorphization.

  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375–377 213Google Scholar

    [3]

    Li Z, Zhao S, Ritchie R O, Meyers M A 2019 Prog. Mater. Sci. 102 296Google Scholar

    [4]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [5]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [6]

    Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw P K 2021 Prog. Mater. Sci. 118 100777Google Scholar

    [7]

    王睿鑫, 唐宇, 李顺, 白书欣 2021 材料导报 35 17001Google Scholar

    Wang R X, Tang Y, Li S, Bai S X 2021 Mater. Rep. 35 17001Google Scholar

    [8]

    李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 333Google Scholar

    Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. Appl. Mech. 52 333Google Scholar

    [9]

    陈海华, 张先锋, 刘闯, 林琨富, 熊玮, 谈梦婷 2021 爆炸与冲击 41 1Google Scholar

    Chen H H, Zhang X F, Liu C, Lin K F, Xiong W 2021 Explo. Shock Waves 41 1Google Scholar

    [10]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar

    [11]

    Jiao Z M, Ma S G, Chu M Y, Yang H J, Wang Z H, Zhang Y, Qiao J W 2016 J. Mater. Eng. Perform. 25 451Google Scholar

    [12]

    Kumar N, Ying Q, Nie X, Mishra R S, Tang Z, Liaw P K, Brennan R E, Doherty K J, Cho K C 2015 Mater. Des. 86 598Google Scholar

    [13]

    Qiao Y, Chen Y, Cao F H, Wang H Y, Dai L H 2021 Int. J. Impact Eng. 158 104008Google Scholar

    [14]

    Jiang Z J, He J Y, Wang H Y, Zhang H S, Lu Z P, Dai L H 2016 Mater. Res. Lett. 4 226Google Scholar

    [15]

    Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020 Acta Mater. 186 257Google Scholar

    [16]

    Chen H, Zhang X, Xiong W, Liu C, Wei H, Wang H, Dai L 2020 Chin. J. Theor. Appl. Mech. 52 1443Google Scholar

    [17]

    Zhang Z, Zhang H, Tang Y, Zhu L, Ye Y, Li S, Bai S 2017 Mater. Des. 133 435Google Scholar

    [18]

    Zhang T W, Jiao Z M, Wang Z H, Qiao J W 2017 Scr. Mater. 136 15Google Scholar

    [19]

    Wen P, Tao G, Spearot D E, Phillpot S R 2022 J. Appl. Phys. 131 051101Google Scholar

    [20]

    Zhao L, Zong H, Ding X, Lookman T 2021 Acta Mater. 209 116801Google Scholar

    [21]

    Xie Z, Jian W R, Xu S, Beyerlein I J, Zhang X, Wang Z, Yao X 2021 Acta Mater. 221 117380Google Scholar

    [22]

    Jian W R, Xie Z, Xu S, Yao X, Beyerlein I J 2022 Scr. Mater. 209 114379Google Scholar

    [23]

    Thürmer D, Gunkelmann N 2022 J. Appl. Phys. 131 065902Google Scholar

    [24]

    Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M, Gunkelmann N 2022 J. Alloys Compd. 895 162567Google Scholar

    [25]

    Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S, Yuan D 2022 Int. J. Mech. Sci. 226 107373Google Scholar

    [26]

    Singh S K, Parashar A 2022 Comput. Mater. Sci. 209 111402Google Scholar

    [27]

    Huang S, Li W, Lu S, Tian F, Shen J, Holmström E, Vitos L 2015 Scr. Mater. 108 44Google Scholar

    [28]

    Fu J X, Cao C M, Tong W, Hao Y X, Peng L M 2017 Mater. Sci. Eng. , A 690 418Google Scholar

    [29]

    Kawamura M, Asakura M, Okamoto N L, Kishida K, Inui H, George E P 2021 Acta Mater. 203 116454Google Scholar

    [30]

    Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George E P 2015 J. Alloys Compd. 623 348Google Scholar

    [31]

    Laplanche G, Gadaud P, Bärsch C, Demtröder K, Reinhart C, Schreuer J, George E P 2018 J. Alloys Compd. 746 244Google Scholar

    [32]

    Haglund A, Koehler M, Catoor D, George E P, Keppens V 2015 Intermetallics 58 62Google Scholar

    [33]

    Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 npj Comput. Mater. 4 1Google Scholar

    [34]

    Fang Q, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar

    [35]

    Alabd Alhafez I, Ruestes C J, Bringa E M, Urbassek H M 2019 J. Alloys Compd. 803 618Google Scholar

    [36]

    Goede A, Preissner R, Frömmel C 1997 J. Comput. Chem. 18 1113Google Scholar

    [37]

    Holian B L, Lomdahl P S 1998 Science 280 2085Google Scholar

    [38]

    Hahn E N, Germann T C, Ravelo R, Hammerberg J E, Meyers M A 2017 Acta Mater. 126 313Google Scholar

    [39]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [40]

    Larsen P M, Schmidt S, Schiotz J 2016 Modell. Simul. Mater. Sci. Eng. 24 055007Google Scholar

    [41]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 15012Google Scholar

    [42]

    Luo G, Huang S, Hu J, Zhu Y, Wang J, Yang G, Zhang R, Sun Y, Zhang J, Shen Q 2022 AIP Adv. 12 055123Google Scholar

    [43]

    Tian X, Cui J, Ma K, Xiang M 2020 Int. J. Heat Mass Transfer 158 120013Google Scholar

    [44]

    Wang Y, Zeng X, Yang X, Xu T 2022 Comput. Mater. Sci. 201 110870Google Scholar

    [45]

    Wen P, Demaske B, Spearot D E, Phillpot S R, Tao G 2021 J. Appl. Phys. 129 165103Google Scholar

    [46]

    Sharma S M, Turneaure S J, Winey J M, Gupta Y M 2020 Phys. Rev. B 102 020103Google Scholar

  • [1] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟. 物理学报, 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [2] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [3] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [4] 周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤. 锆铌合金的特殊准随机结构模型的分子动力学研究. 物理学报, 2021, 70(3): 033103. doi: 10.7498/aps.70.20201407
    [5] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [6] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [7] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [8] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [9] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [10] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究. 物理学报, 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [11] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮. 设计脆性材料的冲击塑性. 物理学报, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [12] 喻寅, 贺红亮, 王文强, 卢铁城. 含微孔洞脆性材料的冲击响应特性与介观演化机制. 物理学报, 2014, 63(24): 246102. doi: 10.7498/aps.63.246102
    [13] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究. 物理学报, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [14] 郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平. 温度对超薄铜膜疲劳性能影响的分子动力学模拟. 物理学报, 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [15] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [16] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [17] 陈敏, 汪俊, 侯氢. 氦对钛的体胀及稳定性影响的分子动力学模拟. 物理学报, 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [20] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
计量
  • 文章访问数:  5371
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-12
  • 修回日期:  2022-10-02
  • 上网日期:  2022-12-06
  • 刊出日期:  2022-12-24

/

返回文章
返回