搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米多晶铜中冲击波阵面的分子动力学研究

马文 陆彦文

引用本文:
Citation:

纳米多晶铜中冲击波阵面的分子动力学研究

马文, 陆彦文

Molecular dynamics investigation of shock front in nanocrystalline copper

Ma Wen, Lu Yan-Wen
PDF
导出引用
  • 冲击波阵面反映材料在冲击压缩下的弹塑性变形行为以及屈服强度、应变率条件等宏观量, 还与冲击压缩后的强度变化联系. 本文使用分子动力学方法, 模拟研究了冲击压缩下纳米多晶铜中的动态塑性变形过程, 考察了冲击波阵面和弹塑性机理对晶界存在的依赖, 并与纳米多晶铝的冲击压缩进行了比较. 研究发现: 相比晶界对纳米多晶铝的贡献而言, 纳米多晶铜中晶界对冲击波阵面宽度的影响较小; 并且其塑性变形机理主要以不全位错的发射和传播为主, 很少观察到全位错和形变孪晶的出现. 模拟还发现纳米多晶铜的冲击波阵面宽度随着冲击应力的增加而减小, 并得到了冲击波阵面宽度与冲击应力之间的定量反比关系, 该定量关系与他人纳米多晶铜模拟结果相近, 而与粗晶铜的冲击压缩实验结果相差较大.
    The elasto-plastic deformation behavior, yield strength and strain rate of material under shock compression can be represented by shock front, and the shock front is also related to the variation of strength after shock compression. In this paper, we study the dynamic plastic deformation processe of nanocrystalline copper under shock compression through molecular dynamics simulations. We also explore the dependences of the shock front and the mechanism of elasto-plastic deformation on grain boundary, and make a comparison with the case of the shock response of nanocrystalline aluminum. This investigation shows that the contribution of grain boundary to the shock-front width of nanocrystalline copper are smaller than that of nanocrystalline aluminum. The plastic mechanism of nanocrystalline copper is dominated by the emission and propagation of partial dislocations, and the full dislocation and deformation twin are rarely found in the samples. From the simulations are also found that the shock-front width decreases with the increase of loaded shock stress. A quantitative inverse relationship between the shock wave front width and the shock intensity is obtained. This quantitative inverse relationship is close to other simulation result of nanocrystalline copper and quite different from results of coarse-grained copper compression experiments.
    • 基金项目: 国家自然科学基金(批准号: 11202238, 11102194)和冲击波物理与爆轰物理国防科技重点实验室基金 (批准号: 9140C6702011104)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11202238, 11102194) and the Science and Technology Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. 9140C6702011104).
    [1]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: John Wiley Sons, Inc.)

    [2]
    [3]

    Jones O E, Mote J D 1969 J. Appl. Phys. 40 4920

    [4]

    Asay J R, Chhabildas L C 2003 in ed. Horie Y, Davison L, Thadhani N N High-Pressure Shock Compression of Solids VI (New York: Springer)

    [5]
    [6]

    Holian B L 2004 Shock Waves 13 489

    [7]
    [8]

    Holian B L, Lomdahl P S 1998 Science 280 2085

    [9]
    [10]

    Germann T C, Holian B L, Lomdahl P S, Ravelo R 2000 Phys. Rev. Lett. 84 5351

    [11]
    [12]
    [13]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [14]

    Cao B, Bringa E M, Meyers M A 2007 Metall. Mater. Trans. A 38A 2681

    [15]
    [16]

    Jarmakani H, Bringa E, Erhart P, Remington B, Wang Y, Vo N, Meyers M 2008 Acta Mater. 56 5584

    [17]
    [18]
    [19]

    Bringa E M, Caro A, Victoria M, Park N 2005 JOM 57 67

    [20]

    Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X 2004 Science 304 654

    [21]
    [22]
    [23]

    Van Swygenhoven H, Derlet P M 2008 in ed. Hirth J P Dislocations in Solids (Amsterdam: Elsevier B. V.)

    [24]

    Chen K G, Zhu W J, Ma W, Deng X L, He H L, Jing F Q 2010 Acta Phys. Sin. 59 1225 (in Chinese) [陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦 2010 物理学报 59 1225]

    [25]
    [26]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 经福谦 2011 物理学报 60 016107]

    [27]
    [28]
    [29]

    Ma W, Zhu W J, Jing F Q 2010 Appl. Phys. Lett. 97 121903

    [30]
    [31]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [32]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [33]
    [34]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4767 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4772]

    [35]
    [36]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 物理学报 59 4781]

    [37]
    [38]
    [39]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [40]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [41]
    [42]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767 (in Chinese) [邓小良, 祝文军, 贺红亮, 伍登学, 经福谦 2006 物理学报 55 4767]

    [43]
    [44]
    [45]

    Marsh P S 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)

    [46]
    [47]
    [48]

    Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535

    [49]
    [50]

    Schiotz J, Jacobsen K W 2003 Science 301 1357

    [51]

    Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838

    [52]
    [53]
    [54]

    Grady D E 1981 Appl. Phys. Lett. 38 825

    [55]
    [56]

    Swegle J W, Grady D E 1985 J. Appl. Phys. 58 692

    [57]

    Grady D E 2010 J. Appl. Phys. 107 013506

    [58]
    [59]
  • [1]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: John Wiley Sons, Inc.)

    [2]
    [3]

    Jones O E, Mote J D 1969 J. Appl. Phys. 40 4920

    [4]

    Asay J R, Chhabildas L C 2003 in ed. Horie Y, Davison L, Thadhani N N High-Pressure Shock Compression of Solids VI (New York: Springer)

    [5]
    [6]

    Holian B L 2004 Shock Waves 13 489

    [7]
    [8]

    Holian B L, Lomdahl P S 1998 Science 280 2085

    [9]
    [10]

    Germann T C, Holian B L, Lomdahl P S, Ravelo R 2000 Phys. Rev. Lett. 84 5351

    [11]
    [12]
    [13]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [14]

    Cao B, Bringa E M, Meyers M A 2007 Metall. Mater. Trans. A 38A 2681

    [15]
    [16]

    Jarmakani H, Bringa E, Erhart P, Remington B, Wang Y, Vo N, Meyers M 2008 Acta Mater. 56 5584

    [17]
    [18]
    [19]

    Bringa E M, Caro A, Victoria M, Park N 2005 JOM 57 67

    [20]

    Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X 2004 Science 304 654

    [21]
    [22]
    [23]

    Van Swygenhoven H, Derlet P M 2008 in ed. Hirth J P Dislocations in Solids (Amsterdam: Elsevier B. V.)

    [24]

    Chen K G, Zhu W J, Ma W, Deng X L, He H L, Jing F Q 2010 Acta Phys. Sin. 59 1225 (in Chinese) [陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦 2010 物理学报 59 1225]

    [25]
    [26]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 经福谦 2011 物理学报 60 016107]

    [27]
    [28]
    [29]

    Ma W, Zhu W J, Jing F Q 2010 Appl. Phys. Lett. 97 121903

    [30]
    [31]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [32]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [33]
    [34]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4767 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4772]

    [35]
    [36]

    Ma W, Zhu W J, Zhang Y L, Chen K G, Deng X L, Jing F Q 2010 Acta Phys. Sin. 59 4781 (in Chinese) [马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦 2010 物理学报 59 4781]

    [37]
    [38]
    [39]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [40]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [41]
    [42]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767 (in Chinese) [邓小良, 祝文军, 贺红亮, 伍登学, 经福谦 2006 物理学报 55 4767]

    [43]
    [44]
    [45]

    Marsh P S 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)

    [46]
    [47]
    [48]

    Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535

    [49]
    [50]

    Schiotz J, Jacobsen K W 2003 Science 301 1357

    [51]

    Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838

    [52]
    [53]
    [54]

    Grady D E 1981 Appl. Phys. Lett. 38 825

    [55]
    [56]

    Swegle J W, Grady D E 1985 J. Appl. Phys. 58 692

    [57]

    Grady D E 2010 J. Appl. Phys. 107 013506

    [58]
    [59]
计量
  • 文章访问数:  2729
  • PDF下载量:  658
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-28
  • 修回日期:  2012-08-17
  • 刊出日期:  2013-02-05

纳米多晶铜中冲击波阵面的分子动力学研究

  • 1. 国防科学技术大学理学院物理系, 长沙 410073
    基金项目: 

    国家自然科学基金(批准号: 11202238, 11102194)和冲击波物理与爆轰物理国防科技重点实验室基金 (批准号: 9140C6702011104)资助的课题.

摘要: 冲击波阵面反映材料在冲击压缩下的弹塑性变形行为以及屈服强度、应变率条件等宏观量, 还与冲击压缩后的强度变化联系. 本文使用分子动力学方法, 模拟研究了冲击压缩下纳米多晶铜中的动态塑性变形过程, 考察了冲击波阵面和弹塑性机理对晶界存在的依赖, 并与纳米多晶铝的冲击压缩进行了比较. 研究发现: 相比晶界对纳米多晶铝的贡献而言, 纳米多晶铜中晶界对冲击波阵面宽度的影响较小; 并且其塑性变形机理主要以不全位错的发射和传播为主, 很少观察到全位错和形变孪晶的出现. 模拟还发现纳米多晶铜的冲击波阵面宽度随着冲击应力的增加而减小, 并得到了冲击波阵面宽度与冲击应力之间的定量反比关系, 该定量关系与他人纳米多晶铜模拟结果相近, 而与粗晶铜的冲击压缩实验结果相差较大.

English Abstract

参考文献 (59)

目录

    /

    返回文章
    返回