搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟

余欣秀 李多生 叶寅 朗文昌 刘俊红 陈劲松 于爽爽

引用本文:
Citation:

硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟

余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽

Molecular dynamics simulation of effect of nickel transition layer on deposition of carbon atoms and graphene growth on cemented carbide surfaces

Yu Xin-Xiu, Li Duo-Sheng, Ye Yin, Lang Wen-Chang, Liu Jun-Hong, Chen Jing-Song, Yu Shuang-Shuang
PDF
HTML
导出引用
  • 石墨烯具有优异的力学性能, 是一种较佳的硬质合金刀具涂层材料. 本文采用分子动力学, 以硬质合金(WC-Co)为基底, 并以Ni为过渡层, 建立沉积石墨烯涂层模型, 模拟Ni, C原子连续沉积和高温退火过程, 研究沉积温度和入射能量对石墨烯涂层生长的影响, 探究石墨烯沉积过程. 模拟结果发现, 当沉积温度为1100 K时, 石墨烯的覆盖率较高, 结构平整. 较高的沉积温度有助于提供足够的动能使碳原子来克服成核的势能障碍, 减少石墨烯生长缺陷. 温度过高导致碳原子不断在优先沉积的碳环处堆积形成多层网状结构和无序结构, 形成的石墨烯涂层覆盖率低. 入射能量的增大有助于减少石墨烯中的空位缺陷; 但入射能量过高, C-C的吸附作用较之C-Ni的吸附作用更强, 导致涂层连续性较差. 入射能量为1 eV时, 涂层表面粗糙度较低, 生长出较多的单层状石墨烯. 1100 K退火时, 碳膜在Ni过渡层同时存在溶解-成核过程, Ni过渡层催化消除了部分石墨烯缺陷, 六元碳环数量增多, 适宜的高温退火有利于缺陷碳环的修复重构和碳链的重排成环, 提高了石墨烯质量. 因此, 当沉积温度1100 K、入射能量1 eV时, 石墨烯沉积完后并退火, 可生长出较高质量的石墨烯涂层.
    WC-Co cemented carbide has excellent cutting performance, which is a potential tool material. But when it is used as cutting ultra-high strength and high hardness materials, the machining accuracy and service life of the tool are significantly reduced. Graphene is a potential coating material for cemented carbide cutting tools due to its excellent mechanical properties. In this work, molecular dynamics (MD) is used to simulate the deposition of nickel transition layer and high-temperature catalytic growth of graphene in cemented carbide. The Ni and C atomic deposition process and the high temperature annealing process are simulated, and a combination of potential functions is adopted to continuously simulate these two deposition processes. The effect of deposition temperature and the effect of incident energy on the growth of graphene are analyzed. The healing mechanism of nickel-based catalytic defective graphene under high-temperature annealing is explored in detail.The simulation results show that at the deposition temperature of 1100 K, the coverage of graphene is higher and the microstructure is flat. The higher temperature helps to provide enough kinetic energy for carbon atoms to overcome the potential energy barrier of nucleation, thereby promoting the migration and rearrangement of carbon atoms and reducing graphene growth defects. Too high a temperature will lead to continuous accumulation of carbon atoms on the deposited carbon rings, forming a multilayered reticulation and disordered structure, which will cause a low coverage rate of graphene. The increase of incident energy helps to reduce the vacancy defects in the film, but excessive energy leads to poor continuity of the film, agglomeration, the more obvious stacking effect of carbon atoms and the tendency of epitaxial growth. When the incident energy is 1 eV, the surface roughness of the film is lower, and more monolayer graphene can be grown. During annealing at 1100 K, the carbon film dissolves and nucleates simultaneously in the Ni transition layer, and the nickel transition layer catalyzes the repair of defective graphene. The graphene film becomes more uniform, and the number of hexagonal carbon rings increases. Appropriate high-temperature annealing can help to repair and reconstruct defective carbon rings and rearrange carbon chains into rings. Therefore, when the deposition temperature is 1100 K and the incident energy is 1 eV, graphene can be deposited and annealed to grow a high-quality graphene coatings. The simulation results provide the reference for preparing the cemented carbide graphene coated tools.
  • 图 1  硬质合金表面沉积模型 (a) Ni原子; (b) C原子

    Fig. 1.  Carbide surface deposition model: (a) Ni atoms; (b) C atoms.

    图 2  石墨烯高温退火的模拟模型

    Fig. 2.  Simulation model for high temperature annealing of graphene.

    图 3  不同温度下石墨烯生长的俯视图和主视图 (a) 600 K时的俯视图; (b) 900 K时的俯视图; (c) 1100 K时的俯视图; (d) 1400 K时的俯视图; (e) 600 K时的主视图; (f) 900 K时的主视图; (g) 1100 K时的主视图; (i) 1400 K时的主视图

    Fig. 3.  Top and main views of graphene growth at different temperatures: (a) Top view at 600 K; (b) top view at 900 K; (c) top view at 1100 K; (d) top view at 1400 K; (e) main view at 600 K; (f) main view at 900 K; (g) main view at 1100 K; (i) main view at 1400 K.

    图 4  不同温度下石墨烯表面的碳环数量和粗糙度

    Fig. 4.  Number of carbon rings and roughness of graphene surface at different temperatures.

    图 5  不同入射能量下石墨烯生长的俯视图和主视图 (a) 0.1 eV时的俯视图; (b) 1 eV时的俯视图; (c) 5 eV时的俯视图; (d) 10 eV时的俯视图; (e) 0.1 eV时的主视图; (f) 1 eV时的主视图; (g) 5 eV时的主视图; (h) 10 eV时的主视图.

    Fig. 5.  Top and main views of graphene growth at different incident energies: (a) Top view at 0.1 eV; (b) top view at 1 eV; (c) top view at 5 eV; (d) top view at 10 eV; (e) main view at 0.1 eV; (f) main view at 1 eV; (g) main view at 5 eV; (h) main view at 10 eV.

    图 6  不同入射能量下石墨烯表面的碳环数量和粗糙度

    Fig. 6.  Number of carbon rings and roughness of graphene surface at different incident energies.

    图 7  不同时间下的石墨烯沉积过程 (a) 20 ps; (b) 80 ps; (c) 100 ps; (d) 121 ps; (e) 160 ps; (f) 230 ps; (g) 300 ps; (h) 380 ps; (i) 450 ps

    Fig. 7.  Graphene deposition process at different times: (a) 20 ps; (b) 80 ps; (c) 100 ps; (d) 121 ps; (e) 160 ps; (f) 230 ps; (g) 300 ps; (h) 380 ps; (i) 450 ps.

    图 8  在沉积温度1100 K、入射能量1 eV条件下, 不同沉积时间的C-C径向分布函数

    Fig. 8.  C-C radial distribution function corresponding to different deposition times at deposition temperature 1100 K and incident energy 1 eV.

    图 9  石墨烯薄膜高温退火形貌图 (a), (b) 300 K, 0 ps; (c) 1100 K, 12 ps; (d) 1100 K, 800 ps

    Fig. 9.  High temperature annealing topography of graphene film: (a), (b) 300 K, 0 ps; (c) 1100 K, 12 ps; (d) 1100 K, 800 ps.

    图 10  不同时间的石墨烯涂层高温退火模拟的主视图和俯视图 (a), (b), (c), (d), (i), (j), (k), (l) 主视图; (e), (f), (g), (h), (m), (n), (o), (p) 俯视图

    Fig. 10.  Main and top views of high-temperature annealing simulations of graphene coatings at different times: (a), (b), (c), (d), (i), (j), (k), (l) Main view; (e), (f), (g), (h), (m), (n), (o), (p) top view.

    图 11  1100 K退火条件下, 体系中原子的MSD随时间的变化 (a) Ni原子; (b) C原子

    Fig. 11.  MSD of atoms in the system as a function of time at 1100 K annealing conditions: (a) Ni atoms; (b) C atoms.

    表 1  WC与Co原子之间的Morse势函数参数[35]

    Table 1.  Parameters of Morse potential function between WC and Co atoms[35].

    Atom pair$ {D}_{{\mathrm{e}}} $/eV$ \alpha $/Å–1$ {r}_{0} $/Å
    W-Co0.09825.140.0872
    C-Co0.111419.7250.1743
    下载: 导出CSV

    表 2  WC与过渡层Ni、过渡层Ni和基底硬质合金各元素及沉积碳原子之间的L-J参数

    Table 2.  L-J parameters between WC and transition layer Ni, transition layer Ni and base carbide and each element of deposited carbon atoms.

    Atom pair$ \varepsilon $/eV$ \sigma $/Å
    W-Ni0.074492.4180
    C-Ni0.04872.9645
    W-C0.00733.1411
    C-C0.00503.8510
    Co-C0.00173.3257
    Ni-C0.04872.9645
    下载: 导出CSV
  • [1]

    储开宇 2011 机床与液压 39 117Google Scholar

    Chu K Y 2011 Machine Tools Hydraul. 39 117Google Scholar

    [2]

    Tian Q Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z F, Li J H, Jia X Y, Liu L S, Jiang X 2017 J. Mater. Sci. Technol. 33 1097Google Scholar

    [3]

    Bouzakis K D, Michailidis N, Skordaris G, Bouzakis E, Biermann D, M'Saoubi R 2012 CIRP Ann. 61 703Google Scholar

    [4]

    Bobzin K, Brögelmann T, Kalscheuer C, Naderi M 2016 Surf. Coat. Technol. 308 349Google Scholar

    [5]

    刘沙, 易丹青, 余志明, 卢斌, 王斌, 李泳侠, 邹丹 2020稀有金属与硬质合金 2 53

    Liu S, Yi D Q, Yu Z M, Lu B, Wang Y X, Zou D 2000 Rare Met. Cem. Carbides 2 53

    [6]

    Wei Q P, Yu Z M, Ashfold M N, Chen Z, Wang L, Ma L 2010 Surf. Coat. Technol. 205 158Google Scholar

    [7]

    王芳 2014 硕士学位论文 (成都: 四川大学)

    Wang F 2014 M. S. Thesis (Chengdu: Sichuan University

    [8]

    Kabir M S, Munroe P, Zhou Z, Xie Z 2017 Surf. Coat. Technol. 309 779Google Scholar

    [9]

    Contreras E, Galindez Y, Rodas M A, Bejarano G, Gómez M A 2017 Surf. Coat. Technol. 332 214Google Scholar

    [10]

    Suresh S 2001 Science 292 2447Google Scholar

    [11]

    Lu K 2014 Science 345 1455Google Scholar

    [12]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [13]

    林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟 2018 物理学报 67 246802Google Scholar

    Lin K X, Li D S, Ye Y, Jiang W G, Ye Z G 2018 Acta Phys. Sin. 67 246802Google Scholar

    [14]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 90

    [15]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [16]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [17]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [18]

    Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Li J 2016 Nature 539 541Google Scholar

    [19]

    Fan S Y, Chen Y N, Xiao S, Shi K J, Meng X Y, Lin S S, Su F H, Su Y F, Chu P K 2024 Carbon 216 118561Google Scholar

    [20]

    Min F L, Yu S B, Sheng W A N G, Yao Z H, Noudem J G, Liu S J, Zhang J F 2022 Trans. Nonferrous Met. Soc. China 32 1935Google Scholar

    [21]

    Garlow J A, Barrett L K, Wu L, Kisslinger K, Zhu Y, Pulecio J F 2016 Sci. Rep. 6 19804Google Scholar

    [22]

    Orofeo C M, Ago H, Hu B, Tsuji M 2011 Nano Res. 4 531Google Scholar

    [23]

    Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus M S, Schaefer J A, Kong J 2009 Nano Res. 2 509Google Scholar

    [24]

    Seo J H, Lee H W, Kim J K, Kim D G, Kang J W, Kang M S, Kim C S 2012 Curr. Appl. Phys. 12 S131Google Scholar

    [25]

    Li X S, Cai W W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [26]

    Li X, Li H, Lee K R, Wang A 2020 Appl. Surf. Sci. 529 147042Google Scholar

    [27]

    王泽, 李国禄, 王海斗, 徐滨士, 康嘉杰 材料导报 28 91

    Wang Z, Li G L, Wang H D, Xu B S, Kang J J 2014 Mater. Rev. 28 91

    [28]

    Kato T, Nagai T, Sasajima Y, Onuki J 2010 Mater. Trans. 51 664Google Scholar

    [29]

    丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫 2023 物理学报 72 068703Google Scholar

    Ding Y Z, Ye Y, Li D S, Xu F, Lang W C, Liu J H, Wen X 2023 Acta Phys. Sin. 72 068703Google Scholar

    [30]

    Backholm M, Foss M, Nordlund K 2013 Appl. Surf. Sci. 268 270Google Scholar

    [31]

    Shibuta Y, Elliott J A 2009 Chem. Phys. Lett. 472 200Google Scholar

    [32]

    Juslin N, Erhart P, Träskelin P, Nord J, Henriksson K O E, Nordlund K, Salonen E, Albe K 2005 J. Appl. Phys. 98 123520Google Scholar

    [33]

    Béland L K, Lu C, Osetskiy Y N, Samolyuk G D, Caro A, Wang L, Stoller R E 2016 J. Appl. Phys. 119 085901Google Scholar

    [34]

    Morse P M 1929 Phys. Rev. 34 57Google Scholar

    [35]

    冯艳, 段海明 2011 原子与分子物理学报 28 251Google Scholar

    Feng Y, Duan H M 2011 J. At. Mol. Phys. 28 251Google Scholar

    [36]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [37]

    Jones J E 1924 Proc. Roy. Soc. A 106 463

    [38]

    Cao Q, Chen Y J, Shao W, Ma X T, Zheng C, Cui Z, Liu Y, Yu B 2020 J. Mol. Liq. 319 114218Google Scholar

    [39]

    王涛 2010 硕士学位论文 (湘潭: 湘潭大学)

    Wang T 2010 M. S. Thesis ( Xiangtan: Xiangtan University

    [40]

    Mueller J E, Van Duin A C, Goddard III W A 2010 J. Phys. Chem. C 114 4939

    [41]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026Google Scholar

    [42]

    Pagon A M, Partridge J G, Hubbard P, Taylor M B, McCulloch D G, Doyle E D, Li G 2010 Surf. Coat. Technol. 204 3552Google Scholar

    [43]

    王璐, 高峻峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [44]

    戴达煌 2008 薄膜与涂层现代表面技术(长沙: 中南大学出版社) 第411页

    Dai D H 2008 Thin Films and Coatings Modern Surface Technology (Changsha: Central South University Press) p411

    [45]

    Chen S D, Bai Q S, Wang H F, Dou Y H, Guo W 2022 Physics E 144 115465Google Scholar

    [46]

    Chen S, Xiong W, Zhou Y S, Lu Y F, Zeng X C 2016 Nanoscale 8 9746Google Scholar

    [47]

    Rut’kov E V, Gall N R 2011 Equilibrium Nucleation, Growth, and Thermal Stability of Graphene on Solids (Mikhailov: InTech) pp209-292

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20232031
    [2] 卓俊添, 林铭浩, 张齐艳, 黄双武. 热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能. 物理学报, doi: 10.7498/aps.73.20240838
    [3] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, doi: 10.7498/aps.72.20221332
    [4] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, doi: 10.7498/aps.71.20211753
    [5] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20212309
    [6] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, doi: 10.7498/aps.71.20211981
    [7] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, doi: 10.7498/aps.70.20201095
    [8] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, doi: 10.7498/aps.70.20210892
    [9] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, doi: 10.7498/aps.69.20200781
    [10] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.68.20182307
    [11] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, doi: 10.7498/aps.68.20190523
    [12] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, doi: 10.7498/aps.68.20190279
    [13] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, doi: 10.7498/aps.67.20172424
    [14] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, doi: 10.7498/aps.67.20172249
    [15] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, doi: 10.7498/aps.66.066201
    [16] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.074401
    [17] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, doi: 10.7498/aps.63.083401
    [18] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086102
    [19] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, doi: 10.7498/aps.60.056103
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  110
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-23
  • 修回日期:  2024-10-26
  • 上网日期:  2024-11-06

/

返回文章
返回