搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹槽铜基底表面与单层石墨烯的相互作用特性研究

张忠强 贾毓瑕 郭新峰 葛道晗 程广贵 丁建宁

引用本文:
Citation:

凹槽铜基底表面与单层石墨烯的相互作用特性研究

张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁

Characteristics of interaction between single-layer graphene on copper substrate and groove

Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning
PDF
导出引用
  • 基于石墨烯二维材料的诸多应用需要将其大面积、高质量地转移到目标基底上,迫切需要了解石墨烯在剥离和转移过程中与基底之间的相互作用特性.本文采用经典分子动力学方法探索了铜基底表面凹槽的几何特征尺寸对石墨烯吸附和剥离过程中凹槽基底对石墨烯吸附作用的影响机理和规律.结果表明:对于固定边界条件下的单层石墨烯,当基底表面的凹槽宽度固定不变时,吸附过程中基底对石墨烯的吸附力随二者间距的减小,呈现先增大后减小的趋势;其最大吸附力随凹槽深度的增加而增大,而当凹槽深度继续增大至石墨烯未能吸附进入凹槽底部的临界值时,吸附力迅速减小;剥离过程中,石墨烯完全剥离的临界作用力随凹槽深度的增加同样呈现先增大后减小的趋势,且与剥离前石墨烯与凹槽基底的相互作用面积有关;当基底表面凹槽的深度固定不变时,吸附和剥离过程中石墨烯-基底之间的吸附力随间距的变化规律取决于石墨烯在基底凹槽处的稳态吸附构型.
    The two-dimensional material graphene is usually required to be transferred on the target substrate for some special applications, thus it is important to understand the adsorption properties in the graphene transferring and stripping processes. In this paper, the adsorption properties of a single-layered graphene on the grooved copper substrate are investigated using molecular dynamics simulations. The influence of geometric characteristic size of the groove on the adsorption force of the graphene deriving from the substrate is explored. For the fixed boundary conditions of the graphene, the adsorption force increases up to maximum and then decreases with reducing the distance between the graphene and substrate in the adsorbing process. The maximum adsorption force increases with groove depth increasing, with the groove width kept constant. Nevertheless, as the groove depth increases continuously, the adsorption force decreases greatly until the graphene cannot be adsorbed into the groove. In the graphene stripping process, the critical force that can strip the graphene completely from the substrate increases first and then decreases with the increase of the groove depth, which is also dependent on the steady adsorbing configuration of the system before stripping. With the groove depth kept constant, the magnitude of the adsorption force between the graphene and substrate is determined by the steady adsorbing configuration of the graphene in the groove region. The adsorption force versus the distance between the graphene and the grooved substrate can be divided into two groups according to whether the graphene can be adsorbed into the groove. In both adsorbing and stripping processes, the adsorption force for the graphene adsorbed into the groove is obviously larger than that for the graphene covered on the groove. Moreover, the influence of the boundary condition of the graphene on the adsorption properties in the groove region on the substrate is considered preliminarily. It indicates that the tensile plane stress within the graphene sheet induced by the fixed boundaries can hinder the graphene from being adsorbed into the groove. The findings may be helpful for the graphene-based fabrication of nano-apparatus and functionalized surface modification.
      通信作者: 张忠强, zhangzq@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472117,11372298)和江苏省自然科学基金(批准号:BK20140556)资助的课题.
      Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472117, 11372298) and the National Science Foundation of Jiangsu Province, China (Grant No. BK20140556).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V 2004 Science 306 666

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Damm C, Nacken T J, Peukert W 2015 Carbon 81 284

    [6]

    Oliveira Jr M H, Schumann T, Gargallo-Caballero R, Fromm F, Seyller T, Ramsteiner M, Trampert A, Geelhaar L, Lopes J M J, Riechert H 2013 Carbon 56 339

    [7]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [8]

    Li H, Fu Z B, Wang H B, Yi Y, Huang W, Zhang J C 2017 Acta Phys. Sin. 66 058101 (in Chinese) [李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成 2017 物理学报 66 058101]

    [9]

    Tyurnina A V, Okuno H, Pochet P, Dijon J 2016 Carbon 102 499

    [10]

    Kang J, Shin D, Bae S, Hong B H 2012 Nanoscale 4 5527

    [11]

    Bunch J S, Zande A M V D, Verbridge S S, Frank L W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [12]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543

    [13]

    He Y, Yu W, Ouyang G 2015 J. Phys. Chem. C 119 5420

    [14]

    Qiu W, Zhang Q P, Li Q, Xu C C, Guo J G 2017 Acta Phys. Sin. 66 166801 (in Chinese) [仇巍, 张启鹏, 李秋, 许超宸, 郭建刚 2017 物理学报 66 166801]

    [15]

    Budrikis Z, Zapperi S 2016 Nano Lett. 16 387

    [16]

    Na S R, Ji W S, Ruoff R S, Rui H, Liechti K M 2014 ACS Nano 8 11234

    [17]

    Kumar S, Parks D, Kamrin K 2016 ACS Nano 10 6552

    [18]

    Wood J D, Schmucker S W, Lyons A S, Pop E, Lyding J W 2011 Nano Lett. 11 4547

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Sinnott S B 2002 J. Phys.: Condens. Mater. 14 783

    [20]

    Hu C, Bai M, L J, Wang P, Zhang L, Li X 2014 Microfluid. Nanofluid. 17 581

    [21]

    Foils S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [22]

    Jones J E 1924 Proc. Roy. Soc. London Ser. A 106 441

    [23]

    Guo Y, Guo W 2006 Nanotechnology 17 4726

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V 2004 Science 306 666

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [5]

    Damm C, Nacken T J, Peukert W 2015 Carbon 81 284

    [6]

    Oliveira Jr M H, Schumann T, Gargallo-Caballero R, Fromm F, Seyller T, Ramsteiner M, Trampert A, Geelhaar L, Lopes J M J, Riechert H 2013 Carbon 56 339

    [7]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [8]

    Li H, Fu Z B, Wang H B, Yi Y, Huang W, Zhang J C 2017 Acta Phys. Sin. 66 058101 (in Chinese) [李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成 2017 物理学报 66 058101]

    [9]

    Tyurnina A V, Okuno H, Pochet P, Dijon J 2016 Carbon 102 499

    [10]

    Kang J, Shin D, Bae S, Hong B H 2012 Nanoscale 4 5527

    [11]

    Bunch J S, Zande A M V D, Verbridge S S, Frank L W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490

    [12]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543

    [13]

    He Y, Yu W, Ouyang G 2015 J. Phys. Chem. C 119 5420

    [14]

    Qiu W, Zhang Q P, Li Q, Xu C C, Guo J G 2017 Acta Phys. Sin. 66 166801 (in Chinese) [仇巍, 张启鹏, 李秋, 许超宸, 郭建刚 2017 物理学报 66 166801]

    [15]

    Budrikis Z, Zapperi S 2016 Nano Lett. 16 387

    [16]

    Na S R, Ji W S, Ruoff R S, Rui H, Liechti K M 2014 ACS Nano 8 11234

    [17]

    Kumar S, Parks D, Kamrin K 2016 ACS Nano 10 6552

    [18]

    Wood J D, Schmucker S W, Lyons A S, Pop E, Lyding J W 2011 Nano Lett. 11 4547

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Sinnott S B 2002 J. Phys.: Condens. Mater. 14 783

    [20]

    Hu C, Bai M, L J, Wang P, Zhang L, Li X 2014 Microfluid. Nanofluid. 17 581

    [21]

    Foils S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [22]

    Jones J E 1924 Proc. Roy. Soc. London Ser. A 106 441

    [23]

    Guo Y, Guo W 2006 Nanotechnology 17 4726

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [3] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [5] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [6] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构. 物理学报, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [7] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [8] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [9] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [10] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [11] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [12] 董赟, 段早琦, 陶毅, Gueye Birahima, 张艳, 陈云飞. 基底支撑刚度梯度变化对石墨烯层间摩擦力的影响. 物理学报, 2019, 68(1): 016801. doi: 10.7498/aps.68.20181905
    [13] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [14] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [15] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [16] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [17] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [18] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [19] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  5741
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-17
  • 修回日期:  2017-11-17
  • 刊出日期:  2018-02-05

/

返回文章
返回