搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究

丁业章 叶寅 李多生 徐锋 朗文昌 刘俊红 温鑫

引用本文:
Citation:

WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究

丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫

Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides

Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin
PDF
HTML
导出引用
  • 对碳原子在硬质合金(WC-Co)表面的自组装及石墨烯生长过程进行了分子动力学模拟. 揭示石墨烯生长中的碳原子沉积、不同长度碳链形成, 以及碳链向多边形转变和石墨烯缺陷愈合及自修复过程. 研究温度和碳沉积速率对高质量石墨烯生长的影响. 模拟结果发现, 低温生长的石墨烯缺陷较多, 质量较低; 高温有助于石墨烯生长, 但是高温会对基底造成损伤, 使生长的石墨烯表面平整度降低. 较高的沉积速率, 获得较高的石墨烯形核率, 分布较为均匀, 但是存在较多的缺陷, 而低的沉积速率有助于碳原子的迁移, 导致碳原子出现团聚, 降低石墨烯质量. 因此, 选择合适的沉积温度和沉积速率有助于生长高质量石墨烯. 仿真优化参数即沉积温度为1300 K, 沉积速率为10 ps/C时, 生长的石墨烯表面平整度较高(RMS = 1.615), 且保持着数目较多的基本单元(N = 71), 质量较好.
    In this paper, molecular dynamics is used to simulate the self-assembly of carbon atoms and the growth of graphene on the surface of cemented carbide, which has some advantages, such as reducing manufacturing costs, shortening the experimental cycle, and optimizing the preparation parameters of graphene. A proper potential function is designed to simulate the formation of graphene on the WC ($10 \bar{1} 0$) surface and Co (0001) surface by a single carbon atom. The growth process of graphene, such as the deposition of carbon atoms, the formation of carbon chains with different lengths, the transformation about carbon chains into polygons, and the basic units and natural defects of graphene are investigated in detail. Three processes of self-repair of graphene defects, including carbon chain rotation, splitting and embedding, are described respectively. The effects of temperature and carbon deposition rate on the growth of high-quality graphene are also studied. The simulation results show that at low temperature, the mobility of carbon atoms is low and grown graphene contains a lot of defects, and the coverage of the substrate is low, which leads to low quality graphene to be prepared. High temperature promotes the migration of carbon atoms and helps to grow high quality graphene. However, high temperature can cause damage to the substrate and reduce the flatness of the growing graphene. At a higher deposition rate, the nucleation rate of graphene is higher and the distribution is more uniform. However, due to the different ability of each graphene nucleus to absorb carbon atoms, there are many macrocyclic defects in the graphene. The low deposition rate has a longer annealing time, which excessively stimulates the migration of carbon atoms. It leads to the aggregation of carbon atoms and reduce the quality of graphene. The proper deposition rate can ensure the nucleation density of graphene, and at the same time, it has enough time to form six membered rings and repair defects, which is conducive to the formation of the high quality graphene. Therefore, it is significantly important to design the appropriate deposition temperature and deposition rate for the growth of high-quality graphene. After optimizing the simulation parameters, high-quality graphene is successfully grown at 1300 K deposition temperature and 10 ps/C deposition rate.
      通信作者: 李多生, duosheng.li@nchu.edu.cn ; 徐锋, xufeng@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51562027, 12062016, 51975287)、江西省重点研发计划重点项目(批准号: 20201BBE51001)、江西省省级优势科技创新重点团队项目(批准号: 20181BCB24007)和江苏省重点研发计划(产业前瞻与关键核心技术)(批准号: BE2021055)资助的课题.
      Corresponding author: Li Duo-Sheng, duosheng.li@nchu.edu.cn ; Xu Feng, xufeng@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51562027, 12062016, 51975287), the Key Project of Key Research and Development Program of Jiangxi Province, China (Grant No. 20201BBE51001), the Advantage Technology Innovation Team of Jiangxi Province, China (Grant No. 20181BCB24007), and the Key Research and Development Program of Jiangsu Province (Industrial Prospects and Key Core Technologies), China (Grant No. BE2021055).
    [1]

    Barfmal M, Montazeri A 2017 Ceram. Int. 43 17167Google Scholar

    [2]

    林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qin Qinghua, 邹伟 2018 物理学报 67 246802Google Scholar

    Lin K X, Li D S, Ye Y, Jiang W G, Ye Z G, Qin Q H, Zou W 2018 Acta Phys. Sin. 67 246802Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Kumar N, Salehiyan R, Chauke V, Joseph Botlhoko O, Setshedi K, Scriba M, Masukume M, Sinha Ray S 2021 FlatChem 27 100224Google Scholar

    [5]

    Manawi Y M, Ihsanullah, Samara A, Al-Ansari T, Atieh M A 2018 Materials 11 822Google Scholar

    [6]

    Shi Q, Tokarska K, Ta H Q, Yang X, Liu Y, Ullah S, Liu L, Trzebicka B, Bachmatiuk A, Sun J, Fu L, Liu Z, Rümmeli M H 2020 Adv. Mater. Interfaces 7 1902024Google Scholar

    [7]

    Dong Y, Guo S, Mao H, Xu C, Xie Y, Deng J, Wang L, Du Z, Xiong F, Sun J 2019 ACS Appl. Electron. Mater. 2 238Google Scholar

    [8]

    Kim S, Shin S, Kim T, Du H, Song M, Lee C W, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352Google Scholar

    [9]

    Sein H, Ahmed W, Rego C A, Jones A N, Amar M, Jackson M, Polini R 2003 J. Phys. Condens. Matter. 15 S2961Google Scholar

    [10]

    Tian Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z, Li J, Jia X, Liu L, Jiang X 2017 J. Mater. Sci. Technol. 33 1097Google Scholar

    [11]

    Kim J S, Park Y M, Bae M K, Kim C W, Kim D W, Shin D C, Kim T G 2018 Mod. Phys. Lett. B 32 1850236Google Scholar

    [12]

    Liu K, Ren E, Ma J, Cao Y, Du J, Ming W, Li X, Li B 2020 J. Mater. Sci. 55 4251Google Scholar

    [13]

    李锦锦, 李多生, 洪跃, 邹伟, 何俊杰 2017 物理学报 66 217101Google Scholar

    Li J J, Li D S, Hong Y, Zou W, He J J 2017 Acta Phys. Sin. 66 217101Google Scholar

    [14]

    王泽, 李国禄, 王海斗, 徐滨士, 康嘉杰 2014 材料导报 28 91Google Scholar

    Wang Z, Li G L, Wang H D, Xu B S, Kang J J 2014 Mater. Rev. 28 91Google Scholar

    [15]

    颜超, 段军红, 何兴道 2010 物理学报 59 8807Google Scholar

    Yan C, Duan J H, He X D 2010 Acta Phys. Sin. 59 8807Google Scholar

    [16]

    Rong Y, Zhang L, He H 2021 Thin Solid Films 732 138778Google Scholar

    [17]

    Kametani N, Nakamura M, Yashiro K, Takaki T 2022 Comput. Mater. Sci. 209 111420Google Scholar

    [18]

    Nasim M, Vo T Q, Mustafi L, Kim B H, Lee C S, Chu W S, Chun D M 2019 Comput. Mater. Sci. 169 109091Google Scholar

    [19]

    Shibuta Y, Elliott J A 2009 Chem. Phys. Lett. 472 200Google Scholar

    [20]

    Xu Z, Yan T, Liu G, Qiao G, Ding F 2016 Nanoscale 8 921Google Scholar

    [21]

    白清顺, 窦昱昊, 何欣, 张爱民, 郭永博 2020 物理学报 69 226102Google Scholar

    Bai Q S, Dou Y H, He X, Zhang A M, Guo Y B 2020 Acta Phys. Sin. 69 226102Google Scholar

    [22]

    Edin E, Blomqvist A, Lattemann M, Luo W, Ahuja R 2019 Int. J. Refract. Met. Hard Mater. 85 105054Google Scholar

    [23]

    Juslin N, Erhart P, Träskelin P, Nord J, Henriksson K O E, Nordlund K, Salonen E, Albe K 2005 J. Appl. Phys. 98 123520Google Scholar

    [24]

    Petisme M V G, Gren M A, Wahnström G 2015 Int. J. Refract. Met. Hard Mater. 49 75Google Scholar

    [25]

    Feng Q, Song X Y, Xie H X, Wang H B, Liu X M, Yin F X 2017 Mater. Design. 120 193Google Scholar

    [26]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [27]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [28]

    Morse P M 1929 Phys. Rev. 34 57Google Scholar

    [29]

    冯艳, 段海明 2011 原子与分子物理学报 28 251Google Scholar

    Feng Y, Duan H M 2011 J. At. Mol. Phys. 28 251Google Scholar

    [30]

    Jones J E 1924 Proc. R. Soc. London, Ser. A 106 463Google Scholar

    [31]

    Pun G P P, Mishin Y 2012 Phys. Rev. B 86 134116Google Scholar

    [32]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter. 14 783Google Scholar

    [33]

    Cao Q, Chen Y, Shao W, Ma X, Zheng C, Cui Z, Liu Y, Yu B 2020 J. Mol. Liq. 319 114218Google Scholar

    [34]

    Li N, Zhen Z, Zhang R, Mu R, Xu Z, He L 2022 Vacuum 196 110750Google Scholar

    [35]

    Yan H, Yang H, Lin S, He J, Zhang M, Li H 2021 Thin Solid Films 736 138921Google Scholar

    [36]

    Batzill M 2012 Surf. Sci. Rep. 67 83Google Scholar

    [37]

    Yu X, Zhang Z, Liu F, Pei J X, Tian X Y 2019 J. Alloys Compd. 806 1309Google Scholar

    [38]

    Zhang L, Zhu Y C, Teng W R, Xia T, Rong Y, Li N, Ma H Z 2017 Comput. Mater. Sci. 130 10Google Scholar

  • 图 1  石墨烯在WC-Co表面沉积的模拟模型

    Fig. 1.  Simulation model of graphene on the surface of WC-Co

    图 2  在1300 K时, 弛豫20 ps的 WC-Co势能变化

    Fig. 2.  Variation of the potential energy of WC-Co within 20 ps relaxation time at 1300 K.

    图 3  石墨烯在不同温度下的正面及侧面生长情况 (a), (c), (e) 分别为1100, 1300, 1500 K时的俯视图; (b), (d), (f) 分别为1100, 1300, 1500 K时的主视图

    Fig. 3.  Front and side growth of graphene at different temperatures: (a), (c), (e) Top views at 1100, 1300, 1500 K; (b), (d), (f) front views at 1100, 1300, 1500 K.

    图 4  不同温度下, 生长石墨烯的质量 (a) 不同温度下, 石墨烯中五元、六元和七元碳环数; (b) 黑色折线表示不同温度下, 五元和六元碳环所占的比例; 蓝色折线表示不同温度下, 石墨烯的RMS值

    Fig. 4.  Quality of growing graphene at different temperatures: (a) The number of five, six, and seven-membered carbon rings in graphene at different temperatures; (b) the black broken line represents the proportions of five and six-membered carbon rings at different temperatures; the blue broken line represents the RMS values of graphene at different temperatures.

    图 5  不同CDR下, 生长石墨烯的正视图、侧视图以及三维形貌图 (a), (b), (c), (d) CDR为2, 5, 10, 20 ps/C时的正视图; (e), (f), (g), (h) CDR为2, 5, 10, 20 ps/C时的侧视图; (i), (j), (k), (l) CDR为2, 5, 10, 20 ps/C时的三维形貌图

    Fig. 5.  Front view, side view and topography of growing graphene under different CDRs: (a), (b), (c), (d) The front views at CDRs of 2, 5, 10, 20 ps/C; (e), (f), (g), (h) the side views at CDRs of 2, 5, 10, 20 ps/C; (i), (j), (k), (l) three-dimensional topography at CDRs of 2, 5, 10, 20 ps/C.

    图 6  不同CDR下生长石墨烯的碳环数目

    Fig. 6.  Quality of graphene grown under different CDRs.

    图 7  在不同时间, 在硬质合金表面生长石墨烯的正视图 (a) 0.229 ns; (b) 0.250 ns; (c) 0.264 ns; (d) 0.405 ns; (e) 0.411 ns; (f) 0.587 ns; (g) 0.676 ns; (h) 1.649 ns; (i) 3.070 ns

    Fig. 7.  Front views of graphene growth on cemented carbide at different times: (a) 0.229 ns; (b) 0.250 ns; (c) 0.264 ns; (d) 0.405 ns; (e) 0.411 ns; (f) 0.587 ns; (g) 0.676 ns; (h) 1.649 ns; (i) 3.070 ns.

    图 8  石墨烯缺陷自修复过程 (a), (b)碳链旋转过程; (c), (d)分裂生成过程; (e), (f)嵌入生成过程

    Fig. 8.  Graphene defect self-healing process: (a), (b) The carbon chain rotation process; (c), (d) the splitting generation process; (e), (f) the intercalation generation process.

    表 1  WC的ABOP使用的拟合参数, W-C 系统的参数取自文献[23]

    Table 1.  Fit parameters used by the ABOP of WC, the parameters for the W-C system are taken from Ref. [23].

    W-WW-CC-C
    D0/eV5.418616.646.0
    r02.340951.905471.39
    β–11.385281.803702.1
    S1.927082.961491.22
    γ1.88227$ \times {10}^{-3} $7.2855$ \times {10}^{-2} $2.0813$ \times {10}^{-4} $
    α–10.458760.00.0
    c2.149691.10304330
    d0.171260.330183.5
    h–0.277800.751071.0
    R3.52.81.85
    D0.30.20.15
    下载: 导出CSV
  • [1]

    Barfmal M, Montazeri A 2017 Ceram. Int. 43 17167Google Scholar

    [2]

    林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qin Qinghua, 邹伟 2018 物理学报 67 246802Google Scholar

    Lin K X, Li D S, Ye Y, Jiang W G, Ye Z G, Qin Q H, Zou W 2018 Acta Phys. Sin. 67 246802Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Kumar N, Salehiyan R, Chauke V, Joseph Botlhoko O, Setshedi K, Scriba M, Masukume M, Sinha Ray S 2021 FlatChem 27 100224Google Scholar

    [5]

    Manawi Y M, Ihsanullah, Samara A, Al-Ansari T, Atieh M A 2018 Materials 11 822Google Scholar

    [6]

    Shi Q, Tokarska K, Ta H Q, Yang X, Liu Y, Ullah S, Liu L, Trzebicka B, Bachmatiuk A, Sun J, Fu L, Liu Z, Rümmeli M H 2020 Adv. Mater. Interfaces 7 1902024Google Scholar

    [7]

    Dong Y, Guo S, Mao H, Xu C, Xie Y, Deng J, Wang L, Du Z, Xiong F, Sun J 2019 ACS Appl. Electron. Mater. 2 238Google Scholar

    [8]

    Kim S, Shin S, Kim T, Du H, Song M, Lee C W, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352Google Scholar

    [9]

    Sein H, Ahmed W, Rego C A, Jones A N, Amar M, Jackson M, Polini R 2003 J. Phys. Condens. Matter. 15 S2961Google Scholar

    [10]

    Tian Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z, Li J, Jia X, Liu L, Jiang X 2017 J. Mater. Sci. Technol. 33 1097Google Scholar

    [11]

    Kim J S, Park Y M, Bae M K, Kim C W, Kim D W, Shin D C, Kim T G 2018 Mod. Phys. Lett. B 32 1850236Google Scholar

    [12]

    Liu K, Ren E, Ma J, Cao Y, Du J, Ming W, Li X, Li B 2020 J. Mater. Sci. 55 4251Google Scholar

    [13]

    李锦锦, 李多生, 洪跃, 邹伟, 何俊杰 2017 物理学报 66 217101Google Scholar

    Li J J, Li D S, Hong Y, Zou W, He J J 2017 Acta Phys. Sin. 66 217101Google Scholar

    [14]

    王泽, 李国禄, 王海斗, 徐滨士, 康嘉杰 2014 材料导报 28 91Google Scholar

    Wang Z, Li G L, Wang H D, Xu B S, Kang J J 2014 Mater. Rev. 28 91Google Scholar

    [15]

    颜超, 段军红, 何兴道 2010 物理学报 59 8807Google Scholar

    Yan C, Duan J H, He X D 2010 Acta Phys. Sin. 59 8807Google Scholar

    [16]

    Rong Y, Zhang L, He H 2021 Thin Solid Films 732 138778Google Scholar

    [17]

    Kametani N, Nakamura M, Yashiro K, Takaki T 2022 Comput. Mater. Sci. 209 111420Google Scholar

    [18]

    Nasim M, Vo T Q, Mustafi L, Kim B H, Lee C S, Chu W S, Chun D M 2019 Comput. Mater. Sci. 169 109091Google Scholar

    [19]

    Shibuta Y, Elliott J A 2009 Chem. Phys. Lett. 472 200Google Scholar

    [20]

    Xu Z, Yan T, Liu G, Qiao G, Ding F 2016 Nanoscale 8 921Google Scholar

    [21]

    白清顺, 窦昱昊, 何欣, 张爱民, 郭永博 2020 物理学报 69 226102Google Scholar

    Bai Q S, Dou Y H, He X, Zhang A M, Guo Y B 2020 Acta Phys. Sin. 69 226102Google Scholar

    [22]

    Edin E, Blomqvist A, Lattemann M, Luo W, Ahuja R 2019 Int. J. Refract. Met. Hard Mater. 85 105054Google Scholar

    [23]

    Juslin N, Erhart P, Träskelin P, Nord J, Henriksson K O E, Nordlund K, Salonen E, Albe K 2005 J. Appl. Phys. 98 123520Google Scholar

    [24]

    Petisme M V G, Gren M A, Wahnström G 2015 Int. J. Refract. Met. Hard Mater. 49 75Google Scholar

    [25]

    Feng Q, Song X Y, Xie H X, Wang H B, Liu X M, Yin F X 2017 Mater. Design. 120 193Google Scholar

    [26]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [27]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [28]

    Morse P M 1929 Phys. Rev. 34 57Google Scholar

    [29]

    冯艳, 段海明 2011 原子与分子物理学报 28 251Google Scholar

    Feng Y, Duan H M 2011 J. At. Mol. Phys. 28 251Google Scholar

    [30]

    Jones J E 1924 Proc. R. Soc. London, Ser. A 106 463Google Scholar

    [31]

    Pun G P P, Mishin Y 2012 Phys. Rev. B 86 134116Google Scholar

    [32]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter. 14 783Google Scholar

    [33]

    Cao Q, Chen Y, Shao W, Ma X, Zheng C, Cui Z, Liu Y, Yu B 2020 J. Mol. Liq. 319 114218Google Scholar

    [34]

    Li N, Zhen Z, Zhang R, Mu R, Xu Z, He L 2022 Vacuum 196 110750Google Scholar

    [35]

    Yan H, Yang H, Lin S, He J, Zhang M, Li H 2021 Thin Solid Films 736 138921Google Scholar

    [36]

    Batzill M 2012 Surf. Sci. Rep. 67 83Google Scholar

    [37]

    Yu X, Zhang Z, Liu F, Pei J X, Tian X Y 2019 J. Alloys Compd. 806 1309Google Scholar

    [38]

    Zhang L, Zhu Y C, Teng W R, Xia T, Rong Y, Li N, Ma H Z 2017 Comput. Mater. Sci. 130 10Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [3] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟. 物理学报, 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [4] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [5] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [6] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [7] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [8] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [9] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [10] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [11] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [12] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [13] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [14] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [15] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [16] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [17] 李志国, 刘玮, 何静婧, 李祖亮, 韩安军, 张超, 周志强, 张毅, 孙云. Stage2沉积速率对低温生长CIGS薄膜特性及器件的影响. 物理学报, 2013, 62(3): 038803. doi: 10.7498/aps.62.038803
    [18] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [19] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响. 物理学报, 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
计量
  • 文章访问数:  4780
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-12-16
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-03-20

/

返回文章
返回