搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层石墨烯的表面起伏的分子动力学模拟

常旭

引用本文:
Citation:

多层石墨烯的表面起伏的分子动力学模拟

常旭

Ripples of multilayer graphenes:a molecular dynamics study

Chang Xu
PDF
导出引用
  • 运用经典分子动力学方法,研究了呈现不同堆积方式的多层石墨烯在不同温度下 的表面起伏,并且和单层、双层石墨烯做对比. 计算发现:室温下,多层石墨烯中存在着横 向特征尺寸约为100 的起伏,该尺寸会随着温度的升高而增大;同时,起伏的高度也 随着温度的升高而增大. 这些石墨烯的层内起伏高度关联函数都遵从幂指数标度行为 Gh(q) q-,对于同一种石墨烯,温度越高幂指数越小;而在 同一温度下,不同堆积方式的石墨烯的幂指数也不同. 所有这些特征都来源于温度以及层间 耦合作用引起的非谐效应.
    Using the classical molecular dynamics simulations, we have investigated the thermally-excited ripples of the multilayer graphenes at different temperatures, and compared them with those of the single- and doublelayer graphene. It is found that: 1) the ripples in multilayer graphene are intrinsic with a characteristic size of about 100 at room tempe- rature, increasing with increase of temperature; at the same time, the ripples height also increases with the temperature; 2) the ripples intralayer height-height correlation functions for the multilayer graphene follow a power-law behavior, Gh(q) q-; the scaling exponent decreases as temperature increases. Moreover, the scaling exponents are different for different types of multilayer graphene even at the same temperature. All these phenomena result from the anharmonic effects which are induced by the temperature and the interlayer interactions.
    • 基金项目: 国家自然科学基金(批准号:11247289,11204169)、河南省教育厅科学技术研究重点项目(批准号:12B140012,13B140191)、商丘师范学院青年科研基金(批准号:2011QN13)和 商丘师范学院教改项目(批准号:2012jgxm25)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247289, 11204169), the Key Program of Science and Technology Research of the Education Department of Henan Province, China (Grant Nos. 12B140012, 13B140191), the Science Research Foundation for Young Scientists of Shangqiu Normal University, China (Grant No. 2011QN13), and the Education Reform Project of Shangqiu Normal University, China (Grant No. 2012jgxm25).
    [1]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D, Geim A K 2006 Phys. Rev. Lett. 97 016801

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]
    [4]
    [5]

    Nelson D R, Peliti L 1987 J. Phys. 48 1085

    [6]
    [7]

    Doussal P Le, Radzihovsky L 1992 Phys. Rev. Lett. 69 1209

    [8]
    [9]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [10]

    Mermin N D 1968 Phys. Rev. 176 250

    [11]
    [12]
    [13]

    Zinke-Allmang M, Feldman L C, Grabow M H 1992 Surf. Sci. Rep. 16 377

    [14]

    Peierls R E 1934 Helv. Phys. Acta 7 81

    [15]
    [16]

    Landau L D 1937 Phys. Z. Sowjetunion 11 26

    [17]
    [18]
    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [21]
    [22]

    Fasolino A, Los J H, Katsnelson M I 2007 Nat. Mater. 6 858

    [23]
    [24]
    [25]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [26]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [27]
    [28]
    [29]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [30]
    [31]

    Carlsson J M 2007 Nat. Mater. 6 801

    [32]

    Katsnelson M I, Geim A K 2008 Phil. Trans. R. Soc. A 366 195

    [33]
    [34]

    Zakharchenko K V, Katsnelson M I, Fasolino A 2009 Phys. Rev. Lett. 102 046808

    [35]
    [36]

    Liu Z, Suenaga K, Harris P J F, Iijima S 2009 Phys. Rev. Lett. 102 015501

    [37]
    [38]

    Lu C L, Chang C P, Lin M F 2007 Eur. Phys. J. B 60 161

    [39]
    [40]
    [41]

    Ho J H, Lu C L, Hwang C C, Chang C P, Lin M F 2006 Phys. Rev. B 74 085406

    [42]

    de Andres P L, Ramrez R, Vergs J A 2008 Phys. Rev. B 77 045403

    [43]
    [44]
    [45]

    Wang T, Guo Q, Liu Y, Sheng K 2012 Chin. Phys. B 21 067301

    [46]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Obergfell D, Roth S, Girit C, Zettl A 2007 Solid State Commun. 143 101

    [47]
    [48]

    Chang X, Ge Y, Dong J M 2010 Eur. Phys. J. B 78 103

    [49]
    [50]
    [51]

    Norimatsu W, Kusunoki M 2010 Phys. Rev. B 81 161410(R)

    [52]

    Mak K F, Lui C H, Shan J, Heinz T F 2009 Phys. Rev. Lett. 102 256405

    [53]
    [54]
    [55]

    Zhu G B, Zhang P 2013 Chin. Phys. B 22 017303

    [56]
    [57]

    Liu D C, Nocedal J 1989 Mathematical Programming B 45 503

    [58]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [59]
    [60]

    Wang W D, Hao Y, Ji X, Yi C L, Niu X Y 2012 Acta Phys. Sin. 61 200207 (in Chinese) [王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 物理学报 61 200207]

    [61]
    [62]
    [63]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [64]
    [65]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [66]
    [67]

    Lennard-Jones J E 1924 Proceedings of the Royal Society (Vol. 106) pp463-469

    [68]
    [69]
    [70]

    Popov V N, Henrard L 2002 Phys. Rev. B 65 235415

    [71]
    [72]

    Lu J P, Yang W 1994 Phys. Rev. B 49 11421

    [73]
    [74]

    Los J H, Katsnelson M I, Yazyev O V, Zakharchenko K V, Fasolino1 A 2009 Phys. Rev. B 80 121405

  • [1]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D, Geim A K 2006 Phys. Rev. Lett. 97 016801

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]
    [4]
    [5]

    Nelson D R, Peliti L 1987 J. Phys. 48 1085

    [6]
    [7]

    Doussal P Le, Radzihovsky L 1992 Phys. Rev. Lett. 69 1209

    [8]
    [9]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [10]

    Mermin N D 1968 Phys. Rev. 176 250

    [11]
    [12]
    [13]

    Zinke-Allmang M, Feldman L C, Grabow M H 1992 Surf. Sci. Rep. 16 377

    [14]

    Peierls R E 1934 Helv. Phys. Acta 7 81

    [15]
    [16]

    Landau L D 1937 Phys. Z. Sowjetunion 11 26

    [17]
    [18]
    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [21]
    [22]

    Fasolino A, Los J H, Katsnelson M I 2007 Nat. Mater. 6 858

    [23]
    [24]
    [25]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [26]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [27]
    [28]
    [29]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [30]
    [31]

    Carlsson J M 2007 Nat. Mater. 6 801

    [32]

    Katsnelson M I, Geim A K 2008 Phil. Trans. R. Soc. A 366 195

    [33]
    [34]

    Zakharchenko K V, Katsnelson M I, Fasolino A 2009 Phys. Rev. Lett. 102 046808

    [35]
    [36]

    Liu Z, Suenaga K, Harris P J F, Iijima S 2009 Phys. Rev. Lett. 102 015501

    [37]
    [38]

    Lu C L, Chang C P, Lin M F 2007 Eur. Phys. J. B 60 161

    [39]
    [40]
    [41]

    Ho J H, Lu C L, Hwang C C, Chang C P, Lin M F 2006 Phys. Rev. B 74 085406

    [42]

    de Andres P L, Ramrez R, Vergs J A 2008 Phys. Rev. B 77 045403

    [43]
    [44]
    [45]

    Wang T, Guo Q, Liu Y, Sheng K 2012 Chin. Phys. B 21 067301

    [46]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Obergfell D, Roth S, Girit C, Zettl A 2007 Solid State Commun. 143 101

    [47]
    [48]

    Chang X, Ge Y, Dong J M 2010 Eur. Phys. J. B 78 103

    [49]
    [50]
    [51]

    Norimatsu W, Kusunoki M 2010 Phys. Rev. B 81 161410(R)

    [52]

    Mak K F, Lui C H, Shan J, Heinz T F 2009 Phys. Rev. Lett. 102 256405

    [53]
    [54]
    [55]

    Zhu G B, Zhang P 2013 Chin. Phys. B 22 017303

    [56]
    [57]

    Liu D C, Nocedal J 1989 Mathematical Programming B 45 503

    [58]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [59]
    [60]

    Wang W D, Hao Y, Ji X, Yi C L, Niu X Y 2012 Acta Phys. Sin. 61 200207 (in Chinese) [王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 物理学报 61 200207]

    [61]
    [62]
    [63]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [64]
    [65]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [66]
    [67]

    Lennard-Jones J E 1924 Proceedings of the Royal Society (Vol. 106) pp463-469

    [68]
    [69]
    [70]

    Popov V N, Henrard L 2002 Phys. Rev. B 65 235415

    [71]
    [72]

    Lu J P, Yang W 1994 Phys. Rev. B 49 11421

    [73]
    [74]

    Los J H, Katsnelson M I, Yazyev O V, Zakharchenko K V, Fasolino1 A 2009 Phys. Rev. B 80 121405

  • [1] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [2] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, 2021, 70(22): 226201. doi: 10.7498/aps.70.20210764
    [3] 张忠强, 于凡顺, 刘珍, 张福建, 程广贵. 氢化多孔石墨烯反渗透特性及机理分析. 物理学报, 2020, 69(9): 098201. doi: 10.7498/aps.69.20191761
    [4] 元丽华, 巩纪军, 王道斌, 张材荣, 张梅玲, 苏俊燕, 康龙. 碱金属修饰的多孔石墨烯的储氢性能. 物理学报, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [5] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [7] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [8] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [9] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [10] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [11] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性. 物理学报, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [12] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯负极材料的粗粒模型. 物理学报, 2015, 64(14): 143101. doi: 10.7498/aps.64.143101
    [13] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [14] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [15] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [16] 张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云. 具有分离门的电抽运多层石墨烯负动态电导率的理论研究. 物理学报, 2012, 61(4): 047803. doi: 10.7498/aps.61.047803
    [17] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [18] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究. 物理学报, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
计量
  • 文章访问数:  3771
  • PDF下载量:  708
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-07
  • 修回日期:  2014-02-27
  • 刊出日期:  2014-04-05

多层石墨烯的表面起伏的分子动力学模拟

  • 1. 商丘师范学院物理与电气信息学院, 商丘 476000
    基金项目: 国家自然科学基金(批准号:11247289,11204169)、河南省教育厅科学技术研究重点项目(批准号:12B140012,13B140191)、商丘师范学院青年科研基金(批准号:2011QN13)和 商丘师范学院教改项目(批准号:2012jgxm25)资助的课题.

摘要: 运用经典分子动力学方法,研究了呈现不同堆积方式的多层石墨烯在不同温度下 的表面起伏,并且和单层、双层石墨烯做对比. 计算发现:室温下,多层石墨烯中存在着横 向特征尺寸约为100 的起伏,该尺寸会随着温度的升高而增大;同时,起伏的高度也 随着温度的升高而增大. 这些石墨烯的层内起伏高度关联函数都遵从幂指数标度行为 Gh(q) q-,对于同一种石墨烯,温度越高幂指数越小;而在 同一温度下,不同堆积方式的石墨烯的幂指数也不同. 所有这些特征都来源于温度以及层间 耦合作用引起的非谐效应.

English Abstract

参考文献 (74)

目录

    /

    返回文章
    返回