搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层MoSSe力学性质的分子动力学模拟研究

张宇航 李孝宝 詹春晓 王美芹 浦玉学

引用本文:
Citation:

单层MoSSe力学性质的分子动力学模拟研究

张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学

Molecular dynamics simulation study on mechanical properties of Janus MoSSe monolayer

Zhang Yu-Hang, Li Xiao-Bao, Zhan Chun-Xiao, Wang Mei-Qin, Pu Yu-Xue
PDF
HTML
导出引用
  • 硫硒化钼(MoSSe)是一种新型二维“双面神”半导体材料, 具有丰富的物理、化学、力学与电学性质. 本文基于Stillinger-Weber势函数, 采用分子动力学模拟方法对不同温度下的完美和含晶界MoSSe单层结构展开详细的力学行为分析. 结果表明: 完美单层MoSSe结构的力学性能呈现明显的各向异性; 在单向拉伸作用下, 其杨氏模量、强度极限和极限应变均随温度的升高而降低; 当温度低于100 K时, 沿锯齿形手性方向受拉伸作用的单层MoSSe结构发生由六环蜂窝相向四方相的相变, 新四方相的杨氏模量约为原相结构的1.3倍且强度显著提升; 当温度高于100 K时, 沿锯齿形手性方向拉伸呈现脆性断裂; 含晶界单层MoSSe结构受拉伸作用首先在晶界处产生裂缝, 并逐步扩展至整个结构后断裂. 锯齿形偏向晶界结构的强度随倾斜角度的增大而降低, 扶手椅形偏向晶界结构也呈下降趋势. 本研究对基于单层MoSSe的电子器件的强度设计和性能优化具有重要指导意义.
    This work systematically studies the mechanical responses of a novel semiconducting Janus MoSSe monolayer subjected to uniaxial tensile loadings by molecular dynamics simulations. It is found that the Janus MoSSe monolayer shows clearly anisotropic responses along armchair direction and the zigzag direction. The phase transition behavior is observed when the Janus MoSSe monolayer is under the action of tension along the zigzag direction at temperatures below 100 K, while it does not exist in any other conditions. The Young’s modulus, ultimate strength and ultimate strain decrease with temperature increasing. Particularly, the ductile-to-brittle fracture behavior is observed when uniaxial tension is applied along the zigzag direction depending on temperatures. The underline fracture mechanism is analyzed. Moreover, mechanical properties of Janus MoSSe monolayer with various grain boundaries are also carefully explored. It is found that the ultimate strength and ultimate strain depend more sensitively on narrow grains than on those wider ones. The crack is initialized near the grain boundaries and propagates along the direction almost perpendicular to the grain boundaries. The findings of this work may shed light on design and optimization of nanoscale electronic devices based on the Janus MoSSe monolayers.
      通信作者: 李孝宝, xiaobaoli@hfut.edu.cn
    • 基金项目: 安徽省自然科学基金(批准号: 2208085MA17, 2208085ME129)和中央高校基本科研业务费专项资金(批准号: PA2021KCPY0029)资助的课题.
      Corresponding author: Li Xiao-Bao, xiaobaoli@hfut.edu.cn
    • Funds: Project supported by the Anhui Provincial Natural Science Foundation, China (Grant Nos. 2208085MA17, 2208085ME129), and the Fundamental Research Funds for the Central Universities (Grant No. PA2021KCPY0029 ).
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Geim A K 2009 Science 324 1530Google Scholar

    [3]

    Avouris P, Dimitrakopoulos C 2012 Mater. Today 15 86Google Scholar

    [4]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H J, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N S, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y, Zhu Y 2017 Extreme Mech. Lett. 13 42Google Scholar

    [5]

    Molle A, Grazianetti C, Tao L, Taneja D, Alam M H, Akinwande D 2018 Chem. Soc. Rev. 47 6370Google Scholar

    [6]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [7]

    Zhang K L, Feng Y L, Wang F, Yang Z C, Wang J 2017 J. Mater. Chem. C 5 11992Google Scholar

    [8]

    Wyatt B C, Rosenkranz A, Anasori B 2021 Adv. Mater. 33 2007973Google Scholar

    [9]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nature Rev. Mater. 2 17033Google Scholar

    [10]

    Wang H T, Yuan H T, Hong S S, Li Y B, Cui Y 2015 Chem. Soc. Rev. 44 2664Google Scholar

    [11]

    Huang H H, Fan X F, Singh D J, Zheng W T 2020 Nanoscale 12 1247Google Scholar

    [12]

    Chen H J, Chen C Z, Li Y, Fang X W 2016 J. Semicond. 37 114004Google Scholar

    [13]

    Shen Y, Tian H, Ren T L 2022 J. Semicond. 43 082002Google Scholar

    [14]

    Lu A Y, Zhu H Y, Xiao J, Chuu C P, Han Y M, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y M, Wang Y, Sokaras D, Nordlund D, Yang P D, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotech. 12 744Google Scholar

    [15]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D Q, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [16]

    Hu T, Jia F H, Zhao G D, Wu J Y, Stroppa A, Ren W 2018 Phys. Rev. B 97 235404Google Scholar

    [17]

    Zhang L, Xia Y, Li X D, Li L Y, Fu X, Cheng J J, Pan R K 2022 J. Appl. Phys. 131 230902Google Scholar

    [18]

    王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣 2021 物理学报 70 026801Google Scholar

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801Google Scholar

    [19]

    Cheng Y C, Zhu Z Y, Tahir M, Schwingenschlogl U 2013 Europhys. Lett. 102 57001Google Scholar

    [20]

    Xia C X, Xiong W Q, Du J, Wang T X, Peng Y T, Li J B 2018 Phys. Rev. B 98 165424Google Scholar

    [21]

    Shi W W, Li G Q, Wang Z G 2019 J. Phys. Chem. C. 123 12261Google Scholar

    [22]

    Guan S S, Ke S S, Yu F F, Deng H X, Guo Y, Lu H F 2019 Appl. Sur. Sci. 496 143692Google Scholar

    [23]

    Dong L, Lou J, Shenoy V B 2017 ACS Nano 11 8242Google Scholar

    [24]

    Javvaji B, He B, Zhuang X Y, Park S H 2019 Phys. Rev. Mater. 3 125402Google Scholar

    [25]

    Li R P, Cheng Y C, Huang W 2018 Small 14 1802091Google Scholar

    [26]

    Ji Y J, Yang M Y, Lin H P, Hou T J, Wang L, Li Y Y, Lee S T 2018 J. Phys. Chem. C 122 3123Google Scholar

    [27]

    Cai H F, Gao Y F, Gao H J, Guo W L 2019 Nano Energy 56 33Google Scholar

    [28]

    Thanh V V, Van N D, Truong D V, Saito R, Hung N T 2020 Appl. Surf. Sci. 526 146730Google Scholar

    [29]

    韩同伟, 贺鹏飞 2010 物理学报 59 3408Google Scholar

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408Google Scholar

    [30]

    王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 物理学报 61 200207Google Scholar

    Wang W D, Hao Y, Ji X, Yi C L Niu X Y 2012 Acta Phys. Sin. 61 200207Google Scholar

    [31]

    Zhao J H, Kou L Z, Jiang J W, Rabczuk T 2014 Nanotechnology 25 295701Google Scholar

    [32]

    李明林, 万亚玲, 胡建玥, 王卫东 2016 物理学报 65 176201Google Scholar

    Li M L, Wan Y L, Hu J Y, Wang W D 2016 Acta Phys. Sin. 65 176201Google Scholar

    [33]

    Xiong Q L, Zhou J L, Zhang J, Kitamura T, Li Z H 2018 Phys. Chem. Chem. Phys. 20 20988Google Scholar

    [34]

    Yang F, Shang J, Kou L Z, Li C, Deng Z C 2022 Nanomaterials 12 1910Google Scholar

    [35]

    Fox A, Ray U, Li T 2019 Carbon 142 388Google Scholar

    [36]

    Gibb A L, Alem N, Chen J H, Erickson K J, Ciston J, Gautam A, Linck M, Zettl A 2013 J. Am. Chem. Soc. 135 6758Google Scholar

    [37]

    Zou X L, Liu Y Y, Yakobson B I 2013 Nano Lett. 13 253Google Scholar

    [38]

    Liang Q J, Zhang Q, Zhao X X, Liu M Z, Wee A T S 2021 ACS Nano 15 2165Google Scholar

    [39]

    邵宇飞, 孟凡顺, 李久会, 赵星 2019 物理学报 68 8Google Scholar

    Shao Y F, Meng F S, Li J H, Zhao X 2019 Acta Phys. Sin. 68 8Google Scholar

    [40]

    Hao W J, Wu Z G, Li X B, Pu Y X 2021 J. Appl. Phys. 129 185101Google Scholar

    [41]

    Khossossi N, Singh D, Ainane A, Ahuja R 2020 Chem. Asian J. 15 3390Google Scholar

    [42]

    Barik G, Pal S 2019 J. Phys. Chem. C 123 21852Google Scholar

    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [44]

    Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012Google Scholar

    [45]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307Google Scholar

    [46]

    Jiang J W, Zhou Y P 2017 arXiv: 1704.03147 [cond-mat. mtrl-sci]

    [47]

    Han Y K, Chen P J, Zhang C, Dong J W, Liu H 2021 Comput. Mater. Sci. 188 110188Google Scholar

    [48]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys. Condens. Matter. 21 395502Google Scholar

    [49]

    Lukyanov S I, Bandura A V, Evarestov R A 2016 RSC Adv. 6 16037Google Scholar

    [50]

    谭一云, 于虹, 黄庆安, 刘同庆 2007 电子器件 30 755

    Tan Y Y, Yu H, Huang Q A, Liu T Q 2007 Chin. J. Electron. 30 755

    [51]

    Yang L, Liu J J, Lin Y W, Xu K, Cao X Z, Zhang Z S, Wu J Y 2021 Chem. Mater. 33 8758Google Scholar

  • 图 1  单层MoSSe的原子结构模型(左侧为俯视图, 右侧为侧视图), 蓝色、淡灰色和淡黄色球分别代表钼(Mo)原子, 硒(Se)原子和硫(S)原子

    Fig. 1.  Top (left panel) and side views (right panel) of atomic structure of the Janus MoSSe monolayer. The blue, light gray and light yellow balls represent Mo, Se and S atoms, respectively.

    图 2  完美单层MoSSe在1—800 K温度下沿(a) AC向和 (b) ZZ向受拉伸作用的应力-应变曲线

    Fig. 2.  Stress-strain curves for perfect Janus MoSSe monolayer subjected to uniaxial tension along AC and ZZ directions respectively, at temperatures between 1 and 800 K.

    图 3  (a) 完美单层MoSSe结构的杨氏模量对温度的依赖规律; (b) 热膨胀系数的拟合

    Fig. 3.  (a) Temperature effect on Young’s modulus of perfect Janus MoSSe monolayer under uniaxial tension along AC and ZZ directions, respectively; (b) thermal expansion coefficients.

    图 4  (a) 完美单层MoSSe在1 K温度下沿AC向受拉的应力-应变曲线, 以及(b) 18.96%, (c) 18.97% 和(d) 19.16%应变状态下的原子结构演变与应力分布图

    Fig. 4.  (a) Stress-strain curve for perfect Janus MoSSe monolayer under tension along AC direction at 1 K; atomic snapshot and associated stress distribution under each strain state of (b) 18.96%, (c) 18.97%, and (d) 19.16%.

    图 5  单层MoSSe在1 K温度下沿ZZ向受拉伸作用应力-应变曲线(a), 以及(b) 22.4%, (c) 33.9%, (d) 35.0%, (e) 44.0% 和 (f) 53.0%应变状态下的原子结构与相应的应力分布图

    Fig. 5.  (a) Stress-strain curve for perfect Janus MoSSe monolayer under tension along ZZ direction at 1 K; atomic snapshot and associated stress distribution under strain states of (b) 22.4%; (c) 33.9%; (d) 35.0%; (e) 44.0% and (f) 53.0%.

    图 6  (a) 沿锯齿形向受单轴拉伸作用下对应的最优结构; 此处仅展示相变前后几种应变状态所对应的结构(b) 沿扶手椅向受单轴拉伸作用下对应的最优结构

    Fig. 6.  Taking a few snapshots of MoSSe monolayer under uniaxial strain states as examples: (a) Relaxed structures under uniaxial strain along zigzag direction before and after phase transtion; (b) relaxed structures under uniaxial strain along armchair direction.

    图 7  (a) 300 K 温度下沿锯齿形向受拉伸作用应力-应变曲线和对应特殊应变状态下(14.7%, 14.8%和15.5%)的原子构型图(b)—(d)

    Fig. 7.  (a) Stress-strain curve of MoSSe monoalayer when subjected to tension along ZZ direction at 300 K and associated snapshots at strains of (b) 14.7%, (c) 14.8 % and (d) 15.5%.

    图 8  完美单层MoSSe沿AC和ZZ方向在拉伸作用下随温度的变化趋势 (a)强度极限; (b)极限应变

    Fig. 8.  Perfect Janus MoSSe monolayer under uniaxial tension along both AC and ZZ directions at various temperatures: (a) The ultimate strength; (b) ultimate strain.

    图 9  1 K温度下 (a) 完美单层MoSSe结构, (b) 10% 的Se原子被去除, (c) 20%的Se原子被去除, (d) 50%的Se原子被替换为S原子和 (e) 全部Se原子被S原子替换即本征对称MoS2, 经过400 ps的弛豫平衡后原子形貌

    Fig. 9.  Atomic snapshots of (a) perfect MoSSe monolayer, (b) 10% Se atoms removed, (c) 20% Se atoms removed, (d) 50% Se atoms replaced by S atoms and (e) 100% Se atoms replaced by S atoms, i.e. MoS2 monolayer, after 400 ps equilibrium simulation time at 1 K

    图 10  1 K温度下 (a) 完美单层MoSSe结构; (b) 单层MoS2结构经过400 ps弛豫平衡后变形的计算

    Fig. 10.  The deformations of (a) perfect MoSSe monolayer and (b) perfect MoS2 monolayer calculated after equilibrium simulation time of 400 ps at 1 K.

    图 11  (a) 扶手椅形方向(0°)、锯齿形方向(60°)和晶界倾斜角度定义示意图; 3种含镜像对称晶界的单层MoSSe结构 (b) 晶界倾斜角为13.2°; (c) 晶界倾斜角为16.4°; (d) 晶界倾斜角21.8°; 两种非镜像对称晶界的MoSSe (e) 晶界倾斜角为32.2°; (f) 晶界倾斜角为38.2°

    Fig. 11.  (a) Definition diagram of armchair (0°), zigzag (60°) directions and other tilt angles; grain boundary structures with tilt angles (b) 13.2°, (c) 16.4°, (d) 21.8°, (e) 32.2° and (f) 38.2°.

    图 12  不同温度下4种镜像对称晶界MoSSe (a) 倾斜角为5.0°, (b) 倾斜角为13.2°, (c) 倾斜角为16.8°和(d) 倾斜角为21.8°; 4种镜像非对称晶界MoSSe (e) 倾斜角为32.2°, (f) 倾斜角为38.2°, (g) 倾斜角为49.6°和(h) 倾斜角为54.3°的应力-应变曲线

    Fig. 12.  Stress-strain curves for Janus MoSSe monolayer with four kinds of symmetric grain boundaries with tilt angles of (a) 5.0°, (b) 13.2°, (c) 16.8° and (d) 21.8°, and four kinds of asymmetric grain boundaries with tilt angles of (e) 32.2°, (f) 38.2°, (g) 49.6° and (h) 54.3° at various temperatures.

    图 13  晶界间宽度为15 nm, 倾斜角度为38.2°的结构受20%拉伸应变模拟时刻的原子结构

    Fig. 13.  Snapshot of Janus MoSSe monolayer with GB of tilt angle of 38.2° and width of 15 nm when subjected to 20% strain.

    图 14  含不同晶界结构的单层MoSSe杨氏模量对温度的依赖性

    Fig. 14.  The temperature effect on Young’s modulus of Janus MoSSe monolayer with various grain boundaries.

    图 15  含不同晶界结构的单层MoSSe的(a) 强度极限、(b) 极限应变对温度的依赖性

    Fig. 15.  The temperature effect on Janus MoSSe monolayer with various grain boundaries: (a) Ultimate strength; (b) ultimate strain.

    图 16  1 K温度下含晶界单层MoSSe结构的杨氏模量对晶界宽度的依赖性

    Fig. 16.  The effect of grain’s width on Young’s modulus of Janus MoSSe monolayer with various grain boundaries at 1 K.

    图 17  1 K温度下含晶界单层MoSSe结构的(a) 强度极限、(b) 极限应变对晶界宽度的依赖性

    Fig. 17.  The dependence on grain width of Janus MoSSe monolayer with various grain boundaries at 1 K: (a) Ultimate strength; (b) ultimate strain.

    图 18  (a) 杨氏模量和强度极限与(b)极限应变随晶界角度的变化趋势

    Fig. 18.  The dependence of (a) Young’s modulus, ultimate strength and (b) ultimate strain on the tilt angles.

    图 19  极限应变(上图)和强度极限(下图)对应变率的依赖性

    Fig. 19.  The dependence of ultimate strength (upper) and ultimate strain (lower) on strain rates.

  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Geim A K 2009 Science 324 1530Google Scholar

    [3]

    Avouris P, Dimitrakopoulos C 2012 Mater. Today 15 86Google Scholar

    [4]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H J, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N S, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y, Zhu Y 2017 Extreme Mech. Lett. 13 42Google Scholar

    [5]

    Molle A, Grazianetti C, Tao L, Taneja D, Alam M H, Akinwande D 2018 Chem. Soc. Rev. 47 6370Google Scholar

    [6]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [7]

    Zhang K L, Feng Y L, Wang F, Yang Z C, Wang J 2017 J. Mater. Chem. C 5 11992Google Scholar

    [8]

    Wyatt B C, Rosenkranz A, Anasori B 2021 Adv. Mater. 33 2007973Google Scholar

    [9]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nature Rev. Mater. 2 17033Google Scholar

    [10]

    Wang H T, Yuan H T, Hong S S, Li Y B, Cui Y 2015 Chem. Soc. Rev. 44 2664Google Scholar

    [11]

    Huang H H, Fan X F, Singh D J, Zheng W T 2020 Nanoscale 12 1247Google Scholar

    [12]

    Chen H J, Chen C Z, Li Y, Fang X W 2016 J. Semicond. 37 114004Google Scholar

    [13]

    Shen Y, Tian H, Ren T L 2022 J. Semicond. 43 082002Google Scholar

    [14]

    Lu A Y, Zhu H Y, Xiao J, Chuu C P, Han Y M, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y M, Wang Y, Sokaras D, Nordlund D, Yang P D, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotech. 12 744Google Scholar

    [15]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D Q, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [16]

    Hu T, Jia F H, Zhao G D, Wu J Y, Stroppa A, Ren W 2018 Phys. Rev. B 97 235404Google Scholar

    [17]

    Zhang L, Xia Y, Li X D, Li L Y, Fu X, Cheng J J, Pan R K 2022 J. Appl. Phys. 131 230902Google Scholar

    [18]

    王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣 2021 物理学报 70 026801Google Scholar

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801Google Scholar

    [19]

    Cheng Y C, Zhu Z Y, Tahir M, Schwingenschlogl U 2013 Europhys. Lett. 102 57001Google Scholar

    [20]

    Xia C X, Xiong W Q, Du J, Wang T X, Peng Y T, Li J B 2018 Phys. Rev. B 98 165424Google Scholar

    [21]

    Shi W W, Li G Q, Wang Z G 2019 J. Phys. Chem. C. 123 12261Google Scholar

    [22]

    Guan S S, Ke S S, Yu F F, Deng H X, Guo Y, Lu H F 2019 Appl. Sur. Sci. 496 143692Google Scholar

    [23]

    Dong L, Lou J, Shenoy V B 2017 ACS Nano 11 8242Google Scholar

    [24]

    Javvaji B, He B, Zhuang X Y, Park S H 2019 Phys. Rev. Mater. 3 125402Google Scholar

    [25]

    Li R P, Cheng Y C, Huang W 2018 Small 14 1802091Google Scholar

    [26]

    Ji Y J, Yang M Y, Lin H P, Hou T J, Wang L, Li Y Y, Lee S T 2018 J. Phys. Chem. C 122 3123Google Scholar

    [27]

    Cai H F, Gao Y F, Gao H J, Guo W L 2019 Nano Energy 56 33Google Scholar

    [28]

    Thanh V V, Van N D, Truong D V, Saito R, Hung N T 2020 Appl. Surf. Sci. 526 146730Google Scholar

    [29]

    韩同伟, 贺鹏飞 2010 物理学报 59 3408Google Scholar

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408Google Scholar

    [30]

    王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 物理学报 61 200207Google Scholar

    Wang W D, Hao Y, Ji X, Yi C L Niu X Y 2012 Acta Phys. Sin. 61 200207Google Scholar

    [31]

    Zhao J H, Kou L Z, Jiang J W, Rabczuk T 2014 Nanotechnology 25 295701Google Scholar

    [32]

    李明林, 万亚玲, 胡建玥, 王卫东 2016 物理学报 65 176201Google Scholar

    Li M L, Wan Y L, Hu J Y, Wang W D 2016 Acta Phys. Sin. 65 176201Google Scholar

    [33]

    Xiong Q L, Zhou J L, Zhang J, Kitamura T, Li Z H 2018 Phys. Chem. Chem. Phys. 20 20988Google Scholar

    [34]

    Yang F, Shang J, Kou L Z, Li C, Deng Z C 2022 Nanomaterials 12 1910Google Scholar

    [35]

    Fox A, Ray U, Li T 2019 Carbon 142 388Google Scholar

    [36]

    Gibb A L, Alem N, Chen J H, Erickson K J, Ciston J, Gautam A, Linck M, Zettl A 2013 J. Am. Chem. Soc. 135 6758Google Scholar

    [37]

    Zou X L, Liu Y Y, Yakobson B I 2013 Nano Lett. 13 253Google Scholar

    [38]

    Liang Q J, Zhang Q, Zhao X X, Liu M Z, Wee A T S 2021 ACS Nano 15 2165Google Scholar

    [39]

    邵宇飞, 孟凡顺, 李久会, 赵星 2019 物理学报 68 8Google Scholar

    Shao Y F, Meng F S, Li J H, Zhao X 2019 Acta Phys. Sin. 68 8Google Scholar

    [40]

    Hao W J, Wu Z G, Li X B, Pu Y X 2021 J. Appl. Phys. 129 185101Google Scholar

    [41]

    Khossossi N, Singh D, Ainane A, Ahuja R 2020 Chem. Asian J. 15 3390Google Scholar

    [42]

    Barik G, Pal S 2019 J. Phys. Chem. C 123 21852Google Scholar

    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [44]

    Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012Google Scholar

    [45]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307Google Scholar

    [46]

    Jiang J W, Zhou Y P 2017 arXiv: 1704.03147 [cond-mat. mtrl-sci]

    [47]

    Han Y K, Chen P J, Zhang C, Dong J W, Liu H 2021 Comput. Mater. Sci. 188 110188Google Scholar

    [48]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys. Condens. Matter. 21 395502Google Scholar

    [49]

    Lukyanov S I, Bandura A V, Evarestov R A 2016 RSC Adv. 6 16037Google Scholar

    [50]

    谭一云, 于虹, 黄庆安, 刘同庆 2007 电子器件 30 755

    Tan Y Y, Yu H, Huang Q A, Liu T Q 2007 Chin. J. Electron. 30 755

    [51]

    Yang L, Liu J J, Lin Y W, Xu K, Cao X Z, Zhang Z S, Wu J Y 2021 Chem. Mater. 33 8758Google Scholar

  • [1] 张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军. Ta1–xHfxC和Ta1–xZrxC固溶体的结构稳定性和力学性质的第一性原理研究. 物理学报, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [2] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [3] 胡雪兰, 卢睿智, 王智隆, 王亚如. Re对Ni3Al微观结构及力学性质影响的第一原理研究. 物理学报, 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [4] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [5] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [6] 王雪飞, 马静婕, 焦照勇, 张现周. Ti3(SnxAl1-x)C2固溶体电学、力学和热学性能的理论研究. 物理学报, 2016, 65(20): 206201. doi: 10.7498/aps.65.206201
    [7] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究. 物理学报, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [8] 曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟. IrB和IrB2力学性质的第一性原理计算. 物理学报, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [9] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [10] 刘海, 李启楷, 何远航. CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟. 物理学报, 2013, 62(20): 208202. doi: 10.7498/aps.62.208202
    [11] 李德华, 苏文晋, 朱晓玲. BC5力学性质的第一性原理计算. 物理学报, 2012, 61(2): 023103. doi: 10.7498/aps.61.023103
    [12] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究. 物理学报, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [13] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [14] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [15] 李德华, 朱晓玲, 苏文晋, 程新路. PtN2的结构和力学性质的第一性原理计算. 物理学报, 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
    [16] 陈谷然, 宋超, 徐骏, 王旦清, 徐岭, 马忠元, 李伟, 黄信凡, 陈坤基. 脉冲激光晶化超薄非晶硅膜的分子动力学研究. 物理学报, 2010, 59(8): 5681-5686. doi: 10.7498/aps.59.5681
    [17] 马颖, 陈尚达, 谢国锋. SiC晶界薄膜的变电荷分子动力学模拟. 物理学报, 2009, 58(11): 7792-7796. doi: 10.7498/aps.58.7792
    [18] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究. 物理学报, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  3073
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-17
  • 修回日期:  2022-11-28
  • 上网日期:  2022-12-09
  • 刊出日期:  2023-02-20

/

返回文章
返回