搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦泡在bcc钨中晶界处成核长大的分子动力学模拟

周良付 张婧 何文豪 王栋 苏雪 杨冬燕 李玉红

引用本文:
Citation:

氦泡在bcc钨中晶界处成核长大的分子动力学模拟

周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红

The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation

Zhou Liang-Fu, Zhang Jing, He Wen-Hao, Wang Dong, Su Xue, Yang Dong-Yang, Li Yu-Hong
PDF
HTML
导出引用
  • 钨(W)是潜在的聚变堆面向等离子体材料. 聚变反应中产生的氦(He)不溶于金属W, 并在其中易聚集形成He泡, 使W基体发生脆化, 从而导致W基体的性能发生退化. 在前人工作的基础上, 本文采用分子动力学研究了He泡在单晶bcc-W中以及bcc-W中∑3[211](110)和∑9[110](411) 晶界处He泡形核长大初期的演化过程. 结果发现, 晶界处He泡的长大机制和单晶W中有所不同. 单晶W中He泡通过挤出位错环促进长大. 而He泡在∑3[211](110)晶界处的长大机制为: 首先挤出并发射少量自间隙W原子, 而后挤出1/2$\left\langle {111} \right\rangle $ 位错线, 随后, 该位错线会沿晶界面上[111]方向迁移出去; 在∑9[110](411)晶界处, He泡在我们的模拟时间尺度范围内没有观察到W自间隙子的发射和位错的挤出.
    Tungsten (W) is a potential candidate for plasma facing materials (PFMs) of fusion reactor. The helium (He) produced in fusion reaction is insoluble and easy to gather and form to He bubbles in W, resulting in embrittlement and degradation of the performance of the W matrix. In this paper, based on molecular dynamics, the nucleation and growth of helium bubbles in the bulk and at ∑3[211](110) and ∑9[110](411) grain boundaries of W was studied. As a result, the growth mechanism of Helium bubbles at grain boundary of W was different from in bulk. Helium bubbles in bulk W grow up by extruding dislocation rings. The growth mechanism of helium bubbles at ∑3[211](110) grain boundary was as follows: Firstly, a small amount of W interstitial atoms were extruded and emitted. And then the 1/2$\left\langle {111} \right\rangle $ dislocation line was extruded. Finally, the 1/2$\left\langle {111} \right\rangle $ dislocation line would migrate along the direction of [111] of the grain boundary interface. Moreover, the emission of W interstitial atoms and dislocation extrusion of the helium bubble were not observed in our simulated time scale at the ∑9[110](411) grain boundary. Then we used the NEB method to calculate the diffusion barrier of self-gap atoms in the bulk and at ∑3[211](110) and ∑9[110](411) grain boundaries of W, which explained the simulation results. The migration energy barrier of W self-gap atoms in the bulk and at ∑3[211](110) grain boundary was only a few to a few millielectron volts. So as long as W self-gap atoms dissociated from the surface of the He bubble in the thermal relaxation process, they can be easily migrated out. However, The migration energy of the W self-gap atom at the ∑9[110](411) grain boundary can be from a few tenths to a few electron volts. Even during the thermal relaxation process, the W self-gap atoms dissociated from the surface of the He bubble. It was difficult for the W self-gap atoms migrated out. Finally, the correlation between He bubble size and stress released was given. Either in bulk or at ∑3[211](110) and ∑9[110](411) grain boundaries of W, after the pressure of the helium bubble becomes stable with time, the radius of the helium bubble would increase rapidly whenever the pressure dropped sharply. So there was a small step on the curve of the evolution of the radius of the helium bubble with time. Thus, helium bubbles in W could promote growth by releasing pressure intermittently.
      通信作者: 李玉红, liyuhong@lzu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11775102)
      Corresponding author: Li Yu-Hong, liyuhong@lzu.edu.cn
    [1]

    Pintsuk G 2012 Comprehensive Nuclear Materials (Vol. 5) (Oxford: Elsevier Press) p551

    [2]

    Hirai T, Escourbiac F, Carpentier-Chouchana S, Durocher A, Fedosov A, Ferrand L, Jokinen T, Komarov V, Merola M, Mitteau R, Pitts R A, Shu W, Sugihara M, Barabash V, Kuznetsov V, Riccardi B, Suzuki S 2014 Phys. Scr. T 159 014006

    [3]

    Wei Q, Li N, Sun K, Wang L 2010 Scr. Mater. 63 430Google Scholar

    [4]

    Hetherly J, Martinez E, Di Z, Nastasi M, Caro A 2012 Scr. Mater. 66 17Google Scholar

    [5]

    郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯 2016 物理学报 65 077803Google Scholar

    Guo H Y, Xia M, Yan Q Z, Guo L P, Ge C C 2016 Acta Phys. Sin. 65 077803Google Scholar

    [6]

    Wang J, Gao X, Gao N, Wang Z G, Cui M, Wei K, Yao C, Sun J, Li B, Zhu Y, Pang L, Li Y, Wang D, Xie E 2015 J. Nucl. Mater. 457 182Google Scholar

    [7]

    Ding M S, Du J P, Wan L, Ogata S, Tian L, EvanMa, Han W Z, Li J, Shan Z W 2016 Nano. Lett. 16 4118Google Scholar

    [8]

    马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波 2016 物理学报 68 040702

    Ma Y T, Liu J B, Han L, Tian L F, Wang X C, Meng X M, Xiao S Q, Wang B 2016 Acta Phys. Sin. 68 040702

    [9]

    王欣欣, 张颖, 周洪波, 王金龙 2014 物理学报 63 046103Google Scholar

    Wang X X, Zhang Y, Zhou H B, Wang J L 2014 Acta Phys. Sin. 63 046103Google Scholar

    [10]

    El-Atwani O, Gonderman S, Suslov S, Efe M, Temmerman G D, Morgan T, Bystrov K, Hattar K, Allain J P 2015 Fusion Eng. Des. 93 9Google Scholar

    [11]

    Miyamoto M, Mikami S, Nagashima H, Iijima N, Nishijima D, Doerner R P, Yoshida N, Watanabe H, Ueda Y, Sagara A 2015 J. Nucl. Mater. 463 333Google Scholar

    [12]

    Wang J, Niu L-L, Shu X, Zhang Y 2015 Nucl. Fusion 55 092003Google Scholar

    [13]

    Kobayashi R, Hattori T, Tamura T, Ogata S 2015 J. Nucl. Mater. 463 1071Google Scholar

    [14]

    Sandoval L, Perez D, Uberuaga B P, Voter A F 2015 Phys. Rev. Lett. 114 105502Google Scholar

    [15]

    Yang S T, Hu N W, Gou X Q, Wang C L, Zhu X L 2016 RCS Advances 64 59875

    [16]

    Yang L, Deng H Q, Gao F, Heinisch H L, Kurtz R J, Hu S Y, Li Y L, Zu X T 2013 Nucl. Instrum. Methods B 303 68Google Scholar

    [17]

    Xie H X, Gao N, Xu K, Lu G H, Yue T, Yin F X 2017 Acta Mater. 141 10Google Scholar

    [18]

    Liu X Y, Uberuaga B P, Perez D, Voter A F 2018 Mater. Res. Lett. 9 522

    [19]

    Yang L, Gao F, Kurtz R J, Zu X T, Peng S M, Long X G, Zhou X S 2015 Acta Mater. 97 86Google Scholar

    [20]

    Zhao Q, Zhang Z, Li Y, Ouyang X 2017 Sci. Technol. Nucl. Ins. 2017 1

    [21]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [22]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [23]

    Ackland G J, Thetford R 1987 Philos. Mag. A 56 15

    [24]

    Beck D E 1968 Mol. Phys. 14 311Google Scholar

    [25]

    Juslin N, Wirth B D 2013 J. Nucl. Mater. 432 61Google Scholar

    [26]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (Vol. 1) (New York: Pergamon Press) p93

    [27]

    Stukowski A, Albe K 2010 Modell. Simul. Mater. Sci. Eng. 18 085001Google Scholar

    [28]

    Guo S H, Zhu B E, Liu W C, Pan Z Y, Wang Y X 2009 Nucl. Instrum. Methods B 267 3278Google Scholar

    [29]

    Yang L, Zu Z Q, Peng S M, Long X G, Zhou X S, Zu X T, Heinisch H L, Kurtz R J, Gao F 2013 J. Nucl. Mater. 441 6Google Scholar

    [30]

    Rycroft C H, Grest G S, Landry J W, Bazant M Z 2006 Phys. Rev. E 74 021306Google Scholar

    [31]

    Chen L, Liu Y L, Zhou H B, Jin S, Zhang Y, Lu G H 2012 Sci. Chin. Phys. Mech. 55 614Google Scholar

    [32]

    He W H, Gao X, Gao N, Wang J, Wang D, Cui M H, Pang L L, Wang Z G 2018 Chin. Phys. Lett. 35 49

    [33]

    Banisalman M J, Oda T 2019 Comput. Mater. Sci. 158 346Google Scholar

  • 图 1  单晶W中氦团簇成核长大初期的位错环发射过程

    Fig. 1.  The punching-loop at the early stage of nucleation and growth of helium clusters in bulk W

    图 2  氦泡在W中∑3[211](110)晶界处的成核长大过程 (a) 0.043 ns, 8 He, 1 SIA; (b) 0.120 ns, 24 He, 6 SIAs; (c) 0.125 ns, 24 He, 6 SIAs; (d) 0.466 ns, 93 He, 21 SIAs; (e) 0.469 ns, 94 He, 22 SIAs; (f) 0.470 ns, 94 He, 22 SIAs

    Fig. 2.  The nucleation and growth of helium clusters at grain boundary ∑3[211](110) in W: (a) 0.043 ns, 8 He, 1 SIA; (b) 0.120 ns, 24 He, 6 SIAs; (c) 0.125 ns, 24 He, 6 SIAs; (d) 0.466 ns, 93 He, 21 SIAs; (e) 0.469 ns, 94 He, 22 SIAs; (f) 0.470 ns, 94 He, 22 SIAs

    图 3  氦泡在W中∑9[110](411)晶界处的成核长大过程 (a) 0.02 ns, 3 He, 1 SIA; (b) 0.1 ns, 19 He, 7 SIAs; (c) 0.5 ns, 99 He, 23 SIAs; (d) 1 ns, 199 He, 44 SIAs; (e) 2 ns, 399 He, 121 SIAs; (f) 2 ns

    Fig. 3.  The nucleation and growth of helium clusters at grain boundary ∑9[110](411) in W: (a) 0.02 ns, 3 He, 1 SIA; (b) 0.1 ns, 19 He, 7 SIAs; (c) 0.5 ns, 99 He, 23 SIAs; (d) 1 ns, 199 He, 44 SIAs; (e) 2 ns, 399 He, 121 SIAs; (f) 2 ns

    图 4  单晶W中自间隙原子的迁移能垒

    Fig. 4.  Calculation of the migration barrier for a W crowdion defect in bulk W

    图 5  W中∑3[211](110)晶界处W自间隙原子的迁移能垒

    Fig. 5.  Calculation of the migration barrier for a W crowdion defect at grain boundary ∑3[211](110) in W

    图 6  W中∑9[110](411)晶界处的自间隙原子的迁移能垒

    Fig. 6.  Calculation of the migration barrier for a W crowdion defect at grain boundary ∑9[110](411) in W

    图 7  (a)单晶W中氦泡的压强与半径随时间的变化; (b) ∑3[211](110)晶界处氦泡的压强与半径随时间的变化; (c) ∑9[110](411)晶界处氦泡的压强与半径随时间的变化

    Fig. 7.  (a) The radius and pressure of the He bubble as a function of simulation time in bulk W; (b) the radius and pressure of the He bubble as a function of simulation time at at grain boundary ∑3[211](110); (c) the radius and pressure of the He bubble as a function of simulation time at at grain boundary ∑9[110](411)

    表 1  单晶W及晶界处弗伦克尔缺陷对的形成能

    Table 1.  Formation energy of frenkel defect pair in bulk W and at grain boundaries.

    缺陷位置弗伦克尔缺陷对的形成能/eV
    单晶W中14.10
    ∑3[211](110)晶界处12.73
    ∑9[110](411)晶界处3.84
    下载: 导出CSV
  • [1]

    Pintsuk G 2012 Comprehensive Nuclear Materials (Vol. 5) (Oxford: Elsevier Press) p551

    [2]

    Hirai T, Escourbiac F, Carpentier-Chouchana S, Durocher A, Fedosov A, Ferrand L, Jokinen T, Komarov V, Merola M, Mitteau R, Pitts R A, Shu W, Sugihara M, Barabash V, Kuznetsov V, Riccardi B, Suzuki S 2014 Phys. Scr. T 159 014006

    [3]

    Wei Q, Li N, Sun K, Wang L 2010 Scr. Mater. 63 430Google Scholar

    [4]

    Hetherly J, Martinez E, Di Z, Nastasi M, Caro A 2012 Scr. Mater. 66 17Google Scholar

    [5]

    郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯 2016 物理学报 65 077803Google Scholar

    Guo H Y, Xia M, Yan Q Z, Guo L P, Ge C C 2016 Acta Phys. Sin. 65 077803Google Scholar

    [6]

    Wang J, Gao X, Gao N, Wang Z G, Cui M, Wei K, Yao C, Sun J, Li B, Zhu Y, Pang L, Li Y, Wang D, Xie E 2015 J. Nucl. Mater. 457 182Google Scholar

    [7]

    Ding M S, Du J P, Wan L, Ogata S, Tian L, EvanMa, Han W Z, Li J, Shan Z W 2016 Nano. Lett. 16 4118Google Scholar

    [8]

    马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波 2016 物理学报 68 040702

    Ma Y T, Liu J B, Han L, Tian L F, Wang X C, Meng X M, Xiao S Q, Wang B 2016 Acta Phys. Sin. 68 040702

    [9]

    王欣欣, 张颖, 周洪波, 王金龙 2014 物理学报 63 046103Google Scholar

    Wang X X, Zhang Y, Zhou H B, Wang J L 2014 Acta Phys. Sin. 63 046103Google Scholar

    [10]

    El-Atwani O, Gonderman S, Suslov S, Efe M, Temmerman G D, Morgan T, Bystrov K, Hattar K, Allain J P 2015 Fusion Eng. Des. 93 9Google Scholar

    [11]

    Miyamoto M, Mikami S, Nagashima H, Iijima N, Nishijima D, Doerner R P, Yoshida N, Watanabe H, Ueda Y, Sagara A 2015 J. Nucl. Mater. 463 333Google Scholar

    [12]

    Wang J, Niu L-L, Shu X, Zhang Y 2015 Nucl. Fusion 55 092003Google Scholar

    [13]

    Kobayashi R, Hattori T, Tamura T, Ogata S 2015 J. Nucl. Mater. 463 1071Google Scholar

    [14]

    Sandoval L, Perez D, Uberuaga B P, Voter A F 2015 Phys. Rev. Lett. 114 105502Google Scholar

    [15]

    Yang S T, Hu N W, Gou X Q, Wang C L, Zhu X L 2016 RCS Advances 64 59875

    [16]

    Yang L, Deng H Q, Gao F, Heinisch H L, Kurtz R J, Hu S Y, Li Y L, Zu X T 2013 Nucl. Instrum. Methods B 303 68Google Scholar

    [17]

    Xie H X, Gao N, Xu K, Lu G H, Yue T, Yin F X 2017 Acta Mater. 141 10Google Scholar

    [18]

    Liu X Y, Uberuaga B P, Perez D, Voter A F 2018 Mater. Res. Lett. 9 522

    [19]

    Yang L, Gao F, Kurtz R J, Zu X T, Peng S M, Long X G, Zhou X S 2015 Acta Mater. 97 86Google Scholar

    [20]

    Zhao Q, Zhang Z, Li Y, Ouyang X 2017 Sci. Technol. Nucl. Ins. 2017 1

    [21]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [22]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [23]

    Ackland G J, Thetford R 1987 Philos. Mag. A 56 15

    [24]

    Beck D E 1968 Mol. Phys. 14 311Google Scholar

    [25]

    Juslin N, Wirth B D 2013 J. Nucl. Mater. 432 61Google Scholar

    [26]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (Vol. 1) (New York: Pergamon Press) p93

    [27]

    Stukowski A, Albe K 2010 Modell. Simul. Mater. Sci. Eng. 18 085001Google Scholar

    [28]

    Guo S H, Zhu B E, Liu W C, Pan Z Y, Wang Y X 2009 Nucl. Instrum. Methods B 267 3278Google Scholar

    [29]

    Yang L, Zu Z Q, Peng S M, Long X G, Zhou X S, Zu X T, Heinisch H L, Kurtz R J, Gao F 2013 J. Nucl. Mater. 441 6Google Scholar

    [30]

    Rycroft C H, Grest G S, Landry J W, Bazant M Z 2006 Phys. Rev. E 74 021306Google Scholar

    [31]

    Chen L, Liu Y L, Zhou H B, Jin S, Zhang Y, Lu G H 2012 Sci. Chin. Phys. Mech. 55 614Google Scholar

    [32]

    He W H, Gao X, Gao N, Wang J, Wang D, Cui M H, Pang L L, Wang Z G 2018 Chin. Phys. Lett. 35 49

    [33]

    Banisalman M J, Oda T 2019 Comput. Mater. Sci. 158 346Google Scholar

  • [1] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [2] 李翔, 尹益辉, 张元章. α-Fe中氦泡极限压强的分子动力学模拟. 物理学报, 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [3] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [4] 付宝勤, 侯氢, 汪俊, 丘明杰, 崔节超. 钨空位捕获氢及其解离过程的分子动力学. 物理学报, 2019, 68(24): 240201. doi: 10.7498/aps.68.20190701
    [5] 马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波. 氦离子显微镜对钨中氦行为的实验研究. 物理学报, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [6] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响. 物理学报, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [7] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [8] 梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺. 温度及深度对钛中氦泡释放过程影响的分子动力学研究. 物理学报, 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [9] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [10] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [11] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [12] 郭龙婷, 孙继忠, 黄艳, 刘升光, 王德真. 低能氢粒子沿不同角度轰击钨(001)表面的反射概率及入射深度分布的分子动力学研究. 物理学报, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [13] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响. 物理学报, 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [14] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [15] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [16] 陈敏, 汪俊, 侯氢. 氦对钛的体胀及稳定性影响的分子动力学模拟. 物理学报, 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [17] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [18] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  9411
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-13
  • 修回日期:  2019-12-09
  • 刊出日期:  2020-02-20

/

返回文章
返回