搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中能高浓度氦离子注入对钨微观结构的影响

郭洪燕 夏敏 燕青芝 郭立平 陈济红 葛昌纯

引用本文:
Citation:

中能高浓度氦离子注入对钨微观结构的影响

郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯

Microstructure of medium energy and high density helium ion implanted tungsten

Guo Hong-Yan, Xia Min, Yan Qing-Zhi, Guo Li-Ping, Chen Ji-Hong, Ge Chang-Chun
PDF
导出引用
  • 采用15 keV, 剂量11017/cm2, 温度为600 ℃氦离子注入钨, 分别以块体钨研究氦离子对钨的表面损伤; 以超薄的钨透射电镜样品直接注入氦离子, 研究该条件下钨的微观结构变化, 以了解氦离子与钨的相互作用过程; 采用扫描电子显微镜、聚焦离子束扫描显微镜、透射电子显微镜、高分辨透射电子显微镜等分析手段研究氦离子注入对钨表面显微结构的影响及氦泡在钨微观结构演化中的作用.
    Bulk tungsten and tungsten transmission electron microscopy (TEM) lamella are implanted with 15 keV helium ions at about 873 K to study the microstructure evolution. The samples are implanted to about 11017 He+/cm2. The projected range of the helium ion in tungsten is about 43.9 nm, calculated with the stopping and range of ions in matter program (the SRIM code). The density of pores with diameters ranging from 90 nm to 430 nm is detected on the surface of helium implanted bulk tungsten by field emission scanning electron microscopy. Blistering is also observed on the surface of helium implanted bulk tungsten. The TEM results indicate that fuzz microstructure is formed in helium implanted tungsten TEM lamella, and stacking faults and micro-pores are observed in the fuzz structure. Besides, the density of nano-scaled helium bubbles is detected around the mirco-pores.
      通信作者: 夏敏, xmdsg@ustb.edu.cn;ccge@mater.ustb.edu.cn ; 葛昌纯, xmdsg@ustb.edu.cn;ccge@mater.ustb.edu.cn
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2010GB109000, 2014GB123000)资助的课题.
      Corresponding author: Xia Min, xmdsg@ustb.edu.cn;ccge@mater.ustb.edu.cn ; Ge Chang-Chun, xmdsg@ustb.edu.cn;ccge@mater.ustb.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2010GB109000, 2014GB123000).
    [1]

    Hao J K 2007 Fusion Reactor Material (Beijing: Chemical Industry Press) p12 (in Chinese) [郝嘉琨 2007 聚变堆材料 (北京: 化学工业出版社)第12页]

    [2]

    Xia M, Yan Q Z, Xu L, Guo H Y, Zhu L X, Ge C C 2013 J. Nucl. Mater. 434 85

    [3]

    Xia M, Yan Q Z, Xu L, Zhu L X, Guo H Y, Ge C C 2013 J. Nucl. Mater. 430 216

    [4]

    Andreani R, Diegele E, Laesser R, van der Schaaf B 2004 J. Nucl. Mater. 329-333 20

    [5]

    Morenzo B, Edgar B, Karin B, Luigi D P, Robin F, Luciano G, Stephan H, Claudio N, Prachai N, Aldo P, Neill T, David W 2005 Fusion Eng. Des. 75-79 1173

    [6]

    Maisonnier D, Cook I, Pierre S, Lorenzo B, Luigi D P, Luciano G, Prachai N, Aldo P 2006 Fusion Eng. Des. 81 1123

    [7]

    Lässer R, Baluc N, Boutard J L, Diegele E, Dudarev S, Gasparotto M, Möslang A, Pippan B, Riccardi B, van der Schaaf B 2007 Fusion Eng. Des. 82 511

    [8]

    Linke J, Akiba M, Bolt H, Breitbach G, Duwe R, Makhankov A, Ovchinnikov I, Rödig M, Wallura E 1997 J. Nucl. Mater. 241-243 1210

    [9]

    Singheiser L, Hirai T, Linke J, Pintsuk M, Rödig M 2009 Trans. Indian Inst. Metals. 62 123

    [10]

    Philipps V 2011 J. Nucl. Mater. 415 S2

    [11]

    Song B, Guo L P, Li M, Li C J, Ye M S, Fu D J, Fan X J 2007 Nuclear Techniques 30 777 (in Chinese) [宋搏, 郭立平, 黎明, 李传佳, 叶明生, 付德军, 范湘军 2007 核技术 30 777]

    [12]

    Yu J N, Sha J J, Yu G 2013 Proceedings of the 16th International Conference on Fusion Reactor Materials (ICFRM-16) Beijing, China, October 20-26, 2013

    [13]

    Ziegler J F, Biersack J P, Littmark U 1985 Ion Implantation Science and Technology (New York: Academic Press) p51

    [14]

    Wang T Q, Shen Y P, Zhang R Q, Wang S W, Zhang S F 2000 High Power Laser and Particle Beams 12 339 (in Chinese) [王同权, 沈永平, 张若棋, 王尚武, 张树 发 2000 强激光与粒子束 12 339]

    [15]

    Wang P X, Song J S 2002 Material of Helium and Tritium Permeation (Beijing: National Defence Industry Press) p30 (in Chinese) [王佩璇, 宋家树 2002 材料中的 氦及氚渗透(北京: 国防工业出版社) 第30页]

    [16]

    Hartley F R 1973 The Chemistry of Platinum and Palladium: with Particular Reference to Complexes of the Elements (London:Applied Science Publishers) p5334

    [17]

    Kajita S, Sakaguchi W, Ohno N, Yoshida N, Saeki T 2009 Nucl. Fusion 49 95005

    [18]

    Cipiti B B, Kulcinski G L 2005 J. Nucl. Mater. 347 298

    [19]

    Kajita S, Yoshida N, Yoshihara R, Ohno N, Yamagiwa M 2011 J. Nucl. Mater. 418 152

    [20]

    Xia M, Guo H Y, Dai Y, Yan Q Z, Guo L P, Li T C, Qiao Y, Ge C C 2014 Chin. Phys. B 23 127806

  • [1]

    Hao J K 2007 Fusion Reactor Material (Beijing: Chemical Industry Press) p12 (in Chinese) [郝嘉琨 2007 聚变堆材料 (北京: 化学工业出版社)第12页]

    [2]

    Xia M, Yan Q Z, Xu L, Guo H Y, Zhu L X, Ge C C 2013 J. Nucl. Mater. 434 85

    [3]

    Xia M, Yan Q Z, Xu L, Zhu L X, Guo H Y, Ge C C 2013 J. Nucl. Mater. 430 216

    [4]

    Andreani R, Diegele E, Laesser R, van der Schaaf B 2004 J. Nucl. Mater. 329-333 20

    [5]

    Morenzo B, Edgar B, Karin B, Luigi D P, Robin F, Luciano G, Stephan H, Claudio N, Prachai N, Aldo P, Neill T, David W 2005 Fusion Eng. Des. 75-79 1173

    [6]

    Maisonnier D, Cook I, Pierre S, Lorenzo B, Luigi D P, Luciano G, Prachai N, Aldo P 2006 Fusion Eng. Des. 81 1123

    [7]

    Lässer R, Baluc N, Boutard J L, Diegele E, Dudarev S, Gasparotto M, Möslang A, Pippan B, Riccardi B, van der Schaaf B 2007 Fusion Eng. Des. 82 511

    [8]

    Linke J, Akiba M, Bolt H, Breitbach G, Duwe R, Makhankov A, Ovchinnikov I, Rödig M, Wallura E 1997 J. Nucl. Mater. 241-243 1210

    [9]

    Singheiser L, Hirai T, Linke J, Pintsuk M, Rödig M 2009 Trans. Indian Inst. Metals. 62 123

    [10]

    Philipps V 2011 J. Nucl. Mater. 415 S2

    [11]

    Song B, Guo L P, Li M, Li C J, Ye M S, Fu D J, Fan X J 2007 Nuclear Techniques 30 777 (in Chinese) [宋搏, 郭立平, 黎明, 李传佳, 叶明生, 付德军, 范湘军 2007 核技术 30 777]

    [12]

    Yu J N, Sha J J, Yu G 2013 Proceedings of the 16th International Conference on Fusion Reactor Materials (ICFRM-16) Beijing, China, October 20-26, 2013

    [13]

    Ziegler J F, Biersack J P, Littmark U 1985 Ion Implantation Science and Technology (New York: Academic Press) p51

    [14]

    Wang T Q, Shen Y P, Zhang R Q, Wang S W, Zhang S F 2000 High Power Laser and Particle Beams 12 339 (in Chinese) [王同权, 沈永平, 张若棋, 王尚武, 张树 发 2000 强激光与粒子束 12 339]

    [15]

    Wang P X, Song J S 2002 Material of Helium and Tritium Permeation (Beijing: National Defence Industry Press) p30 (in Chinese) [王佩璇, 宋家树 2002 材料中的 氦及氚渗透(北京: 国防工业出版社) 第30页]

    [16]

    Hartley F R 1973 The Chemistry of Platinum and Palladium: with Particular Reference to Complexes of the Elements (London:Applied Science Publishers) p5334

    [17]

    Kajita S, Sakaguchi W, Ohno N, Yoshida N, Saeki T 2009 Nucl. Fusion 49 95005

    [18]

    Cipiti B B, Kulcinski G L 2005 J. Nucl. Mater. 347 298

    [19]

    Kajita S, Yoshida N, Yoshihara R, Ohno N, Yamagiwa M 2011 J. Nucl. Mater. 418 152

    [20]

    Xia M, Guo H Y, Dai Y, Yan Q Z, Guo L P, Li T C, Qiao Y, Ge C C 2014 Chin. Phys. B 23 127806

  • [1] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [2] 李翔, 尹益辉, 张元章. α-Fe中氦泡极限压强的分子动力学模拟. 物理学报, 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [3] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [4] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [5] 孙楠楠, 施展, 丁琪, 许伟伟, 沈洋, 南策文. 基于有效介质理论的物理性能计算模型的软件实现. 物理学报, 2019, 68(15): 157701. doi: 10.7498/aps.68.20182273
    [6] 马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波. 氦离子显微镜对钨中氦行为的实验研究. 物理学报, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [7] 梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺. 温度及深度对钛中氦泡释放过程影响的分子动力学研究. 物理学报, 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [8] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [9] 杜洋洋, 李炳生, 王志光, 孙建荣, 姚存峰, 常海龙, 庞立龙, 朱亚滨, 崔明焕, 张宏鹏, 李远飞, 王霁, 朱卉平, 宋鹏, 王栋. He离子辐照6H-SiC引入缺陷的光谱研究. 物理学报, 2014, 63(21): 216101. doi: 10.7498/aps.63.216101
    [10] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [11] 郭龙婷, 孙继忠, 黄艳, 刘升光, 王德真. 低能氢粒子沿不同角度轰击钨(001)表面的反射概率及入射深度分布的分子动力学研究. 物理学报, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [12] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷的介电谱. 物理学报, 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [13] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响. 物理学报, 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [14] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究. 物理学报, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [15] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [16] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [17] 陈顺生, 杨昌平, 邓 恒, 孙志刚. Nd0.7Sr0.3MnO3中显微结构相关电致电阻效应. 物理学报, 2008, 57(6): 3798-3802. doi: 10.7498/aps.57.3798
    [18] 王俊忠, 吉 元, 王晓冬, 刘志民, 罗俊锋, 李志国. Al互连线和Cu互连线的显微结构. 物理学报, 2007, 56(1): 371-375. doi: 10.7498/aps.56.371
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [20] 班春燕, 巴启先, 崔建忠, 路贵民, 訾炳涛. 脉冲电流作用下LY12铝合金的微观结构和合金元素分布. 物理学报, 2001, 50(10): 2028-2031. doi: 10.7498/aps.50.2028
计量
  • 文章访问数:  3875
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-21
  • 修回日期:  2016-01-25
  • 刊出日期:  2016-04-05

中能高浓度氦离子注入对钨微观结构的影响

    基金项目: 国家重点基础研究发展计划 (批准号: 2010GB109000, 2014GB123000)资助的课题.

摘要: 采用15 keV, 剂量11017/cm2, 温度为600 ℃氦离子注入钨, 分别以块体钨研究氦离子对钨的表面损伤; 以超薄的钨透射电镜样品直接注入氦离子, 研究该条件下钨的微观结构变化, 以了解氦离子与钨的相互作用过程; 采用扫描电子显微镜、聚焦离子束扫描显微镜、透射电子显微镜、高分辨透射电子显微镜等分析手段研究氦离子注入对钨表面显微结构的影响及氦泡在钨微观结构演化中的作用.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回