搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子辐照诱导钨再结晶的模拟研究

张国帅 尹超 王兆繁 陈泽 毛世峰 叶民友

引用本文:
Citation:

中子辐照诱导钨再结晶的模拟研究

张国帅, 尹超, 王兆繁, 陈泽, 毛世峰, 叶民友

Simulation of neutron irradiation-induced recrystallization of tungsten

Zhang Guo-Shuai, Yin Chao, Wang Zhao-Fan, Chen Ze, Mao Shi-Feng, Ye Min-You
PDF
HTML
导出引用
  • 钨作为未来聚变堆偏滤器靶板的候选材料, 需要长期服役在高温且受到高能中子辐照的严峻环境, 这将导致钨发生中子辐照诱导再结晶, 从而提高钨发生沿晶脆断的可能性, 威胁偏滤器的运行安全, 因此研究中子辐照诱导钨再结晶的物理机制具有重要意义. 然而, 与最近高通量同位素反应(HFIR)堆高温下中子辐照实验观察到的结果相比, 目前考虑辐照增强再结晶驱动力效应的模型低估了中子辐照对再结晶的影响, 结果表明仍有其他效应影响再结晶过程. 基于此, 本文在假设晶界迁移率与自体扩散系数成正比的前提下, 引入辐照增强晶界迁移因子(R), 建立了新的辐照诱导再结晶动力学模型. 模拟结果显示, 在综合考虑辐照增强再结晶驱动力和晶界迁移效应后, 模型计算出的850 ℃下达到一半再结晶分数所需要的时间($ {{t}}_{{X}{}={}0.5} $)和HFIR堆中子辐照实验结果相符, 这表明辐照增强晶界迁移效应是影响辐照诱导再结晶现象的重要因素之一. 另外, 模型研究了不同辐照温度下钨的$ {{t}}_{{X}{=0.5}} $. 结果表明辐照与未辐照的$ {{t}}_{{X}{=0.5}} $差别随温度升高而逐渐下降. 这是因为随着温度的升高, 辐照缺陷复合加剧, 辐照缺陷对再结晶驱动力的贡献下降, 且热激活扩散系数增大的幅度大于辐照下扩散系数的增大幅度, 所以热激活效应会逐渐主导再结晶过程.
    Tungsten is the candidate for divertor target material in future fusion reactors. The tungsten divertor target is expected to long serve in a harsh environment of high temperature and high-energy neutron irradiation. This can lead to neutron irradiation-induced recrystallization of tungsten, thereby increasing the possibility of intergranular brittle failure and compromising the safe operation of the divertor. Thus, clarifying the mechanism of neutron irradiation-induced tungsten recrystallization is important. However, the current model, which only considers the irradiation-enhanced effect on recrystallization driving force, underestimates the irradiation effect on recrystallization compared with the results observed in recent high-temperature neutron irradiation experiments in the HFIR reactor. It indicates that other irradiation effects can also influence the recrystallization process.In this study, we introduce the irradiation-enhanced grain boundary migration factor (R) into the established irradiation-induced recrystallization kinetic model, on the assumption that the grain boundary migration velocity is proportional to the self-diffusion coefficient. The simulation results show that after considering both irradiation-enhanced recrystallization driving force and grain boundary migration effect, the calculated half-recrystallization time (${t}_{{X}\text{}=\text{}0.5}$) at 850 ℃ from the model matches the one obtained in the neutron irradiation experiment in the HFIR reactor. This result indicates that the irradiation-enhanced grain boundary migration effect is one of the important factors affecting irradiation-induced recrystallization. In addition, the difference between irradiated and unirradiated tX=0.5 decreases with temperature increasing. This phenomenon is due to the fact that as the temperature increases, the contribution of irradiation defects to the driving force for recrystallization decreases owing to the irradiation defect recombination. Moreover, the increase of thermal activation diffusion coefficient is more significant than the increase of the irradiation-enhanced diffusion coefficient. These findings suggest that the thermal activation effect eventually dominates the recrystallization process over the irradiation effect as temperature increases.
      通信作者: 尹超, chaoyin@ustc.edu.cn ; 叶民友, yemy@ustc.edu.cn
    • 基金项目: 国家自然科学基金联合基金(批准号: U2267208)、中国博士后科学基金(批准号: 2021M703113)、中国科学院台湾青年人才计划(批准号: 2021TWGB0001)、安徽省高校协同创新项目(批准号: GXXT-2021-026)、中国科学院合肥大科学中心协同创新培育基金项目(批准号: 2022HSC-CIP010)和中央高校基本科研业务费专项资金(批准号: WK2140000015)资助的课题.
      Corresponding author: Yin Chao, chaoyin@ustc.edu.cn ; Ye Min-You, yemy@ustc.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U2267208), the China Postdoctoral Science Foundation (Grant No. 2021M703113), the Chinese Academy of Sciences Taiwan Young Talent Program, China (Grant No. 2021TWGB0001), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2021-026), the Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences, China (Grant No. 2022HSC-CIP010), and the Fundamental Research Funds for the Central Universities of China (Grant No. WK2140000015).
    [1]

    Philipps V 2011 J. Nucl. Mater. 415 S2Google Scholar

    [2]

    Rieth M, Dudarev S L, Gonzalez de Vicente S M, et al. 2013 J. Nucl. Mater. 432 482Google Scholar

    [3]

    Norajitra P, Abdel-Khalik S I, Giancarli L M, Ihli T, Janeschitz G, Malang S, Mazul I V, Sardain P 2008 Fusion Eng. Des. 83 893Google Scholar

    [4]

    Abernethy R G 2017 J. Mater. Sci. Technol. 33 388Google Scholar

    [5]

    Coenen J W, Antusch S, Aumann M, et al. 2016 Phys. Scr. T 2016 014002Google Scholar

    [6]

    Hu X, Koyanagi T, Fukuda M, Katoh Y, Snead L L, Wirth B D 2016 J. Nucl. Mater. 480 235Google Scholar

    [7]

    Lopez A A 2015 Ph. D. Dissertation (Copenhagen: Technical University of Denmark)

    [8]

    Alfonso A, Jensen D J, Luo G N, Pantleon W 2014 J. Nucl. Mater. 455 591Google Scholar

    [9]

    Kang W A, Dr A, Xiang Z, Lla B, Xz B, Ywab C 2021 Mater. Sci. Eng. A 806 140828Google Scholar

    [10]

    Budaev V P, Martynenko Y V, Karpov A V, Belova N E, Zhitlukhin A M 2015 J. Nucl. Mater. 463 237Google Scholar

    [11]

    Bonnekoh C, Reiser J, Hartmaier A, Bonk S, Hoffmann A, Rieth M 2020 J. Mater. Sci. 55 12314Google Scholar

    [12]

    Ciucani U M, Thum A, Devos C, Pantleon W 2019 Nucl. Mater. Energy 20 100701Google Scholar

    [13]

    Gietl H, Koyanagi T, Hu X, Fukuda M, Hasegawa A, Katoh Y 2022 J. Alloys Compd. 901 163419Google Scholar

    [14]

    Duerrschnabel M, Klimenkov M, Jaentsch U, Rieth M, Schneider H C, Terentyev D 2021 Sci. Rep. 11 7572Google Scholar

    [15]

    Klimenkov M, Jaentsch U, Rieth M, Schneider H C, Armstrong D E J, Gibson J, Roberts S G 2016 Nucl. Mater. Energy 9 480Google Scholar

    [16]

    Fukuda M, Kumar N A P K, Koyanagi T, Garrison L M, Snead L L, Katoh Y, Hasegawa A 2016 J. Nucl. Mater. 479 249Google Scholar

    [17]

    Fukuda M, Tanno T, Nogami S, Hasegawa A 2012 Mater. Trans. 53 2145Google Scholar

    [18]

    Ma P W, Mason D R, Dudarev S L 2020 Phys. Rev. Mater. 4 103609Google Scholar

    [19]

    Mannheim A, van Dommelen J A W, Geers M G D 2018 Mech. Mater. 123 43Google Scholar

    [20]

    Mannheim A, van Dommelen J A W, Geers M G D 2019 Comput. Mater. Sci. 170 109146Google Scholar

    [21]

    Barbu A, Clouet E 2007 Solid State Phenom. 129 51Google Scholar

    [22]

    Gilbert M R, Marian J, Sublet J C 2015 J. Nucl. Mater. 467 121Google Scholar

    [23]

    Gilbert M R, Sublet J C 2018 J. Nucl. Mater. 504 101Google Scholar

    [24]

    Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D, Kurtz R J 2015 J. Nucl. Mater. 462 329Google Scholar

    [25]

    Huang C H, Gilbert M R, Marian J 2018 J. Nucl. Mater. 499 204Google Scholar

    [26]

    Troev T, Nankov N, Yoshiie T 2011 Nucl. Instrum. Methods Phys. Res. B 269 566Google Scholar

    [27]

    Caturla M J, Rubia T, Victoria M, Corzine R K, Greene G A 2001 J. Nucl. Mater. 296 90Google Scholar

    [28]

    Vrielink M A O, Shah V, van Dommelen J A W, Geers M G D 2021 J. Nucl. Mater. 554 153068Google Scholar

    [29]

    Yi X, Sand A E, Mason D R, Kirk M A, Roberts S G, Nordlund K, Dudarev S L 2015 Epl 110 36001Google Scholar

    [30]

    Sand A E, Mason D R, De Backer A, Yi X, Dudarev S L, Nordlund K 2017 Mater. Res. Lett. 5 357Google Scholar

    [31]

    Ghoniem N M, Sharafat S 1980 J. Nucl. Mater. 92 121Google Scholar

    [32]

    Li Y G, Zhou W H, Ning R H, Huang L F, Zeng Z, Ju X 2012 Commun. Comput. Phys. 11 1547Google Scholar

    [33]

    Humphreys F J, Hatherly M 2004 Recrystallization and Related Annealing Phenomena (Oxford: Elsevier) pp232–242

    [34]

    Fanfoni M, Tomellini M 1998 Il Nuovo Cimento D 20 1171Google Scholar

    [35]

    Hallberg H 2011 Metals 1 16Google Scholar

    [36]

    Yi X, Jenkins M L, Hattar K, Edmondson P D, Roberts S G 2015 Acta Mater. 92 163Google Scholar

    [37]

    Yi X, Jenkins M L, Kirk M A, Zhou Z, Roberts S G 2016 Acta Mater. 112 105Google Scholar

    [38]

    Yi X 2014 Ph. D. Dissertation (Oxford: University of Oxford) pp207–234

    [39]

    Was G S 2017 Fundamentals of Radiation Materials Science (Berlin: Springer) pp191—203

    [40]

    Rollett A D, Gottstein G, Shvindlerman L S, Molodov D A 2004 Zeitschrift Fur. Metallkunde 95 226Google Scholar

    [41]

    Favre J, Fabregue D, Piot D, Tang N, Koizumi Y, Maire E, Chiba A 2013 Metall. Mater. Trans. A 44 5861Google Scholar

    [42]

    Klimenkov M, Duerrschnabel M, Jaentsch U, Lied P, Rieth M, Schneider H C, Terentyev D, Van Renterghem W 2022 J. Nucl. Mater. 572 154018Google Scholar

    [43]

    Li Y H, Zhou H B, Jin S, Zhang Y, Deng H, Lu G H 2017 Nucl. Fusion 57 046006Google Scholar

    [44]

    You Y W, Kong X S, Wu X, Liu C S, Fang Q F, Chen J L, Luo G N 2017 Nucl. Fusion 57 086006Google Scholar

    [45]

    Setyawan W, Selby A P, Juslin N, Stoller R E, Wirth B D, Kurtz R J 2015 J. Phys. Condens. Matter 27 225402Google Scholar

    [46]

    Nes E, Ryum N, Hunderi O 1985 Acta Metall. 33 11Google Scholar

  • 图 1  使用JMAK模型拟合钨等温退火实验再结晶分数的演变, 拟合用实验数据取自Lopez[7]

    Fig. 1.  Using the JMAK model to fit the evolution of the recrystallization fraction in the isothermal annealing experiment of pure tungsten, the experimental data used for the fitting were taken from Lopez[7].

    图 2  不同中子辐照温度下的缺陷团簇尺寸与密度随辐照时间的演变 (a), (c), (e), (g), (i), (k)分别为V团簇在750, 850, 950, 1100, 1200, 1300 ℃下的演变; (b), (d), (f), (h), (j), (l) 分别为I团簇在750, 850, 950, 1100, 1200, 1300 ℃下的演变

    Fig. 2.  Evolution of defect cluster size and density with irradiation time at different neutron irradiation temperatures: (a), (c), (e), (g), (i), (k) Evolution of V cluster at 750, 850, 950, 1100, 1200, 1300 ℃; (b), (d), (f), (h), (j), (l) I clusters evolution of cluster at 750, 850, 950, 1100, 1200, 1300 ℃.

    图 3  不同温度下Vn与V发生反应的速率系数 (a)不同温度下Vn吸收V反应的速率系数; (b)不同温度下Vn+1发射V反应的速率系数

    Fig. 3.  Rate coefficients of the reaction between Vn and V at different temperatures: (a) Rate coefficients of Vn absorption V reactions at different temperatures; (b) rate coefficients of Vn+1 emission V reactions at different temperatures.

    图 4  (a)不同辐照温度下P的演变; (b)在截取的时间点处不同辐照温度下P的占比; (c)不同辐照温度下R的演变; (d)不同辐照温度下P×M的演变

    Fig. 4.  (a) Evolution of driving force P at different irradiation temperatures; (b) proportion of defects contribution to driving force at different irradiation temperatures and time; (c) evolution of R at different irradiation temperatures; (d) evolution of product of driving force and grain boundary mobility (P×M) at different irradiation temperatures.

    图 5  只考虑辐照增强P及同时考虑辐照增强PM (P+M)的再结晶分数演变曲线

    Fig. 5.  Recrystallization fraction (X) evolution curve considering only irradiation enhancement on driving force (P) and both irradiation enhancement driving force and grain boundary mobility (P+M).

    图 6  中子辐照下与未辐照下钨的半再结晶时间(${t_{X = 0.5}}$)随温度的演变

    Fig. 6.  Evolution of semi-recrystallization time (${t_{X = 0.5}}$) of tungsten under neutron irradiation and non-irradiation with temperature.

    表 1  CD模型模拟HFIR堆中子辐照钨的源项相关参数

    Table 1.  Parameters related to source term of neutron irradiated tungsten in HFIR reactor simulated by CD model.

    参数NRTdpa
    /(10–7 dpa·s–1)
    Sdpa
    /(10–8 dpa·s–1)
    Gtot
    /(1021 m–3·s–1)
    数值2.166.414.06
    下载: 导出CSV
  • [1]

    Philipps V 2011 J. Nucl. Mater. 415 S2Google Scholar

    [2]

    Rieth M, Dudarev S L, Gonzalez de Vicente S M, et al. 2013 J. Nucl. Mater. 432 482Google Scholar

    [3]

    Norajitra P, Abdel-Khalik S I, Giancarli L M, Ihli T, Janeschitz G, Malang S, Mazul I V, Sardain P 2008 Fusion Eng. Des. 83 893Google Scholar

    [4]

    Abernethy R G 2017 J. Mater. Sci. Technol. 33 388Google Scholar

    [5]

    Coenen J W, Antusch S, Aumann M, et al. 2016 Phys. Scr. T 2016 014002Google Scholar

    [6]

    Hu X, Koyanagi T, Fukuda M, Katoh Y, Snead L L, Wirth B D 2016 J. Nucl. Mater. 480 235Google Scholar

    [7]

    Lopez A A 2015 Ph. D. Dissertation (Copenhagen: Technical University of Denmark)

    [8]

    Alfonso A, Jensen D J, Luo G N, Pantleon W 2014 J. Nucl. Mater. 455 591Google Scholar

    [9]

    Kang W A, Dr A, Xiang Z, Lla B, Xz B, Ywab C 2021 Mater. Sci. Eng. A 806 140828Google Scholar

    [10]

    Budaev V P, Martynenko Y V, Karpov A V, Belova N E, Zhitlukhin A M 2015 J. Nucl. Mater. 463 237Google Scholar

    [11]

    Bonnekoh C, Reiser J, Hartmaier A, Bonk S, Hoffmann A, Rieth M 2020 J. Mater. Sci. 55 12314Google Scholar

    [12]

    Ciucani U M, Thum A, Devos C, Pantleon W 2019 Nucl. Mater. Energy 20 100701Google Scholar

    [13]

    Gietl H, Koyanagi T, Hu X, Fukuda M, Hasegawa A, Katoh Y 2022 J. Alloys Compd. 901 163419Google Scholar

    [14]

    Duerrschnabel M, Klimenkov M, Jaentsch U, Rieth M, Schneider H C, Terentyev D 2021 Sci. Rep. 11 7572Google Scholar

    [15]

    Klimenkov M, Jaentsch U, Rieth M, Schneider H C, Armstrong D E J, Gibson J, Roberts S G 2016 Nucl. Mater. Energy 9 480Google Scholar

    [16]

    Fukuda M, Kumar N A P K, Koyanagi T, Garrison L M, Snead L L, Katoh Y, Hasegawa A 2016 J. Nucl. Mater. 479 249Google Scholar

    [17]

    Fukuda M, Tanno T, Nogami S, Hasegawa A 2012 Mater. Trans. 53 2145Google Scholar

    [18]

    Ma P W, Mason D R, Dudarev S L 2020 Phys. Rev. Mater. 4 103609Google Scholar

    [19]

    Mannheim A, van Dommelen J A W, Geers M G D 2018 Mech. Mater. 123 43Google Scholar

    [20]

    Mannheim A, van Dommelen J A W, Geers M G D 2019 Comput. Mater. Sci. 170 109146Google Scholar

    [21]

    Barbu A, Clouet E 2007 Solid State Phenom. 129 51Google Scholar

    [22]

    Gilbert M R, Marian J, Sublet J C 2015 J. Nucl. Mater. 467 121Google Scholar

    [23]

    Gilbert M R, Sublet J C 2018 J. Nucl. Mater. 504 101Google Scholar

    [24]

    Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D, Kurtz R J 2015 J. Nucl. Mater. 462 329Google Scholar

    [25]

    Huang C H, Gilbert M R, Marian J 2018 J. Nucl. Mater. 499 204Google Scholar

    [26]

    Troev T, Nankov N, Yoshiie T 2011 Nucl. Instrum. Methods Phys. Res. B 269 566Google Scholar

    [27]

    Caturla M J, Rubia T, Victoria M, Corzine R K, Greene G A 2001 J. Nucl. Mater. 296 90Google Scholar

    [28]

    Vrielink M A O, Shah V, van Dommelen J A W, Geers M G D 2021 J. Nucl. Mater. 554 153068Google Scholar

    [29]

    Yi X, Sand A E, Mason D R, Kirk M A, Roberts S G, Nordlund K, Dudarev S L 2015 Epl 110 36001Google Scholar

    [30]

    Sand A E, Mason D R, De Backer A, Yi X, Dudarev S L, Nordlund K 2017 Mater. Res. Lett. 5 357Google Scholar

    [31]

    Ghoniem N M, Sharafat S 1980 J. Nucl. Mater. 92 121Google Scholar

    [32]

    Li Y G, Zhou W H, Ning R H, Huang L F, Zeng Z, Ju X 2012 Commun. Comput. Phys. 11 1547Google Scholar

    [33]

    Humphreys F J, Hatherly M 2004 Recrystallization and Related Annealing Phenomena (Oxford: Elsevier) pp232–242

    [34]

    Fanfoni M, Tomellini M 1998 Il Nuovo Cimento D 20 1171Google Scholar

    [35]

    Hallberg H 2011 Metals 1 16Google Scholar

    [36]

    Yi X, Jenkins M L, Hattar K, Edmondson P D, Roberts S G 2015 Acta Mater. 92 163Google Scholar

    [37]

    Yi X, Jenkins M L, Kirk M A, Zhou Z, Roberts S G 2016 Acta Mater. 112 105Google Scholar

    [38]

    Yi X 2014 Ph. D. Dissertation (Oxford: University of Oxford) pp207–234

    [39]

    Was G S 2017 Fundamentals of Radiation Materials Science (Berlin: Springer) pp191—203

    [40]

    Rollett A D, Gottstein G, Shvindlerman L S, Molodov D A 2004 Zeitschrift Fur. Metallkunde 95 226Google Scholar

    [41]

    Favre J, Fabregue D, Piot D, Tang N, Koizumi Y, Maire E, Chiba A 2013 Metall. Mater. Trans. A 44 5861Google Scholar

    [42]

    Klimenkov M, Duerrschnabel M, Jaentsch U, Lied P, Rieth M, Schneider H C, Terentyev D, Van Renterghem W 2022 J. Nucl. Mater. 572 154018Google Scholar

    [43]

    Li Y H, Zhou H B, Jin S, Zhang Y, Deng H, Lu G H 2017 Nucl. Fusion 57 046006Google Scholar

    [44]

    You Y W, Kong X S, Wu X, Liu C S, Fang Q F, Chen J L, Luo G N 2017 Nucl. Fusion 57 086006Google Scholar

    [45]

    Setyawan W, Selby A P, Juslin N, Stoller R E, Wirth B D, Kurtz R J 2015 J. Phys. Condens. Matter 27 225402Google Scholar

    [46]

    Nes E, Ryum N, Hunderi O 1985 Acta Metall. 33 11Google Scholar

  • [1] 祁超, 马玉田, 齐艳飞, 肖善曲, 王波. 微观组织对叠片结构W-PFM的热疲劳效应的影响. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240007
    [2] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究. 物理学报, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [3] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析. 物理学报, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [4] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平. 中子对碲锌镉辐照损伤模拟研究. 物理学报, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [5] 王凯, 孙靖雅, 潘昌基, 王飞飞, 张可, 陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制. 物理学报, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [6] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [7] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [8] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [9] 马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波. 氦离子显微镜对钨中氦行为的实验研究. 物理学报, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [10] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [11] 孙凌涛, 郭朝中, 肖绪洋. Cu偏析诱导Co团簇结构及性质异常的动力学模拟. 物理学报, 2016, 65(12): 123601. doi: 10.7498/aps.65.123601
    [12] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响. 物理学报, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [13] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析. 物理学报, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [14] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [15] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [16] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [17] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [18] 郭龙婷, 孙继忠, 黄艳, 刘升光, 王德真. 低能氢粒子沿不同角度轰击钨(001)表面的反射概率及入射深度分布的分子动力学研究. 物理学报, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [19] 冯锡淇, 林奇生, 满振勇, 廖晶莹, 胡关钦. 钨酸铅晶体的本征色心和辐照诱导色心. 物理学报, 2002, 51(2): 315-321. doi: 10.7498/aps.51.315
    [20] 李养贤, 刘何燕, 牛萍娟, 刘彩池, 徐岳生, 杨德仁, 阙端鳞. 中子辐照直拉硅中的本征吸除效应. 物理学报, 2002, 51(10): 2407-2410. doi: 10.7498/aps.51.2407
计量
  • 文章访问数:  2284
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 修回日期:  2023-05-31
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-08-20

/

返回文章
返回