搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微观组织对叠片结构钨基面向等离子体材料的热疲劳效应的影响

祁超 马玉田 齐艳飞 肖善曲 王波

引用本文:
Citation:

微观组织对叠片结构钨基面向等离子体材料的热疲劳效应的影响

祁超, 马玉田, 齐艳飞, 肖善曲, 王波

Influence of microstructure on thermal fatigue effect of laminated tungsten based plasma-facing material

Qi Chao, Ma Yu-Tian, Qi Yan-Fei, Xiao Shan-Qu, Wang Bo
PDF
HTML
导出引用
  • 钨(W)作为面向等离子体材料的最佳候选者, 对热冲击载荷的响应是未来聚变装置研究中的重要问题. 在热负荷作用下, 钨基面向等离子体材料(W-based plasma-facing material, W-PFM)的表面会产生热损伤, 包括脆性开裂和疲劳裂纹. 本文提出了抑制W-PFM 热损伤的新方案, 即叠片结构W-PFM 方案. 利用电子束设备对不同厚度和热处理工艺的W箔组成的叠片结构W进行了热疲劳实验. 样品施加功率密度为48 MW/m2的热脉冲, 循环5000次. 随着W箔片厚度的减小, 叠片结构W表面的裂纹损伤减轻. 叠片结构W在循环热载荷作用后表面产生的主裂纹均近似平行于箔片厚度方向. 厚度较小的W箔表面只有主裂纹, 厚度较大的W箔表面除了出现主裂纹外, 还会形成裂纹网络, 且主裂纹宽度较大. 最终选取热损伤区域的扫描电子显微镜图像, 并利用计算机图片处理软件和分析软件, 对表面热疲劳裂纹损伤进行了定量分析. 发现相同厚度下应力态W的裂纹面积最小, 裂纹数量最少, 说明去应力态W的抗辐照损伤能力最强. 实验结果还表明, 除了微观组织的影响, 叠片结构W-PFM的单轴应力状态和裂纹阻断机制也都对其热疲劳性能的提高有所贡献.
    The response of tungsten (W) to thermal shock loading, as the best candidate for plasma-facing material (PFM), is an important issue in the research of future fusion devices. Under thermal loading, thermal irradiation damage, including brittle cracking and fatigue cracking, occurs on the surface of tungsten based plasma-facing material (W-PFM). In this work, a new scheme to suppress the thermal irradiation damage to W-PFM, i.e. the laminated structure W-PFM scheme, is proposed. Thermal fatigue experiments of laminated structure W composed of W foils with different thickness and heat treatment processes are carried out by using an electron beam device. The samples are subjected to thermal pulses with a power density of 48 MW/m2 for 5000 cycles. The results indicate that the crack damage to the surface of the laminated structure W decreases with the decrease of the thickness of W foils under the same heat treatment conditions. The main cracks are produced on the surface of laminated structure W after cyclic thermal loads have been all approximately parallel to the foil thickness direction. Only the main cracks appear on the surfaces of W foils with a smaller thickness, while crack networks develop on the surfaces of W foils with a larger thickness , in addition to the main cracks with a larger width. In the rolled state, the laminated structure W has the lowest degree of surface plastic deformation for the same thickness. The thermal fatigue crack damage to the surface is quantitatively analyzed by using computer image processing software and analysis software, and scanning electron microscope images of the thermal damage area are finally selected. It is found that the de-stressed state W has the smallest crack area and the smallest number of cracks for the same thickness, indicating that the de-stressed state W has the strongest resistance to irradiation damage. The experimental results also show that in addition to the effect of microstructure, both the uniaxial stress state and the crack-blocking mechanism of the laminated structured W-PFM contribute to the improvement of its thermal fatigue performance.
      通信作者: 王波, wangbo@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52104374)和中央引导地方科技发展资金项目(批准号: 236Z1004G)资助的课题.
      Corresponding author: Wang Bo, wangbo@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52104374) and the Hebei Province Central Leading Local Science and Technology Development Fund Project, China (Grant No. 236Z1004G).
    [1]

    Zhang C, Wang K, Si R, Li J, Song C, Wu S, Yan B, Chen C 2023 Chin. Phys. B 32 113102Google Scholar

    [2]

    Xu C, Wan F R 2023 ActaPhys. Sin. 72 056801 [徐驰, 万发荣 2023 物理学报 72 056801]Google Scholar

    Xu C, Wan F R 2023 ActaPhys. Sin. 72 056801Google Scholar

    [3]

    Qin M F, Wang Y M, Zhang H Y, Sun J Z 2023 ACTA Phys. Sin. 72 245204 [秦梦飞, 王英敏, 张红玉, 孙继忠 2023 物理学报 72 245204]Google Scholar

    Qin M F, Wang Y M, Zhang H Y, Sun J Z 2023 ACTA Phys. Sin. 72 245204Google Scholar

    [4]

    Terra A, Sergienko G, Gago M, Kreter A, Martynova Y, Rasinski M, Wirtz M, Loewenhoff T, Mao Y, Schwalenberg D, Raumann L, Coenen J W, Moeller S, Koppitz T, Dorow-Gerspach D, Brezinsek S, Unterberg B, Linsmeier C 2020 Phys. Scr. 2020 014045

    [5]

    Wirtz M, Linke J, Loewenhoff Th, Pintsuk G, Uytdenhouwen I 2017 Nucl. Mater. Energy 12 148Google Scholar

    [6]

    Wang L, Wang B, Li S D, Ma D, Tang Y H, Yan H 2016 Int. J. Refract. Met. Hard Mater. 61 61Google Scholar

    [7]

    Loewenhoff Th, Linke J, Pintsuk G, Thomser C 2012 Fusion Eng. Des. 87 1201Google Scholar

    [8]

    Pintsuk G, Prokhodtseva A, Uytdenhouwen I 2011 J. Nucl. Mater. 417 481Google Scholar

    [9]

    Linke J, Loewenhoff T, Massaut V, Pintsuk G, Ritz G, Rödig M, Schmidt A, Thomser C, Uytdenhouwen I, Vasechko V, Wirtz M 2011 Nucl. Fusion 51 073017Google Scholar

    [10]

    Garkusha I E, Landman I, Linke J, Makhlaj V A, Medvedev A V, Malykhin S V, Peschanyi S, Pintsuk G, Pugachev A T, Tereshin V I 2011 J. Nucl. Mater. 415 S65Google Scholar

    [11]

    Pintsuk G, Kühnlein W, Linke J, Rödig M 2007 Fusion Eng. Des. 82 1720Google Scholar

    [12]

    Wang Y, Wang H, Mi B, Zhao J, Zhang C 2023 J. Nucl. Mater. 583 154555Google Scholar

    [13]

    Wirtz M, Linke J, Loewenhoff T, Pintsuk G, Uytdenhouwen I 2016 Phys. Scr. T167 014015Google Scholar

    [14]

    Rieth M, Dudarev S L, Gonzalez De Vicente S M, et al. 2013 J. Nucl. Mater. 432 482Google Scholar

    [15]

    Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz R J, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You J H, Pippan R 2013 J. Nucl. Mater. 442 S181Google Scholar

    [16]

    Parkes N, Dodds R, Watson A, Dye D, Hardie C, Humphry-Baker S A, Knowles A J 2023 Int. J. Refract. Met. Hard Mater. 113 106209Google Scholar

    [17]

    Alam M E, Odette G R 2023 Nucl. Mater. Energy 36 101467Google Scholar

    [18]

    Yang T, Wang J, Feng F, Liu X, Youyun L, Xueyu G 2023 Fusion Eng. Des. 196 113991Google Scholar

    [19]

    Dang N, Lian Y, Song J, Dai S, Yan B, Fan F, Wang J, Liu X 2023 Int. J. Refract. Met. Hard Mater. 117 106415Google Scholar

    [20]

    Coenen J W, Mao Y, Sistla S, Riesch J, Hoeschen T, Broeckmann Ch, Neu R, Linsmeier Ch 2018 Nucl. Mater. Energy 15 214Google Scholar

    [21]

    Neu R, Coenen J W, Curzadd B, Gietl H, Greuner H, Höschen T, Hunger K, Lürbke R, Müller A, Riesch J, Schlick G, Siefken U, Visca E, You J 2023 Mater. Res. Express 10 116516Google Scholar

    [22]

    Terra A, Sergienko G, Tokar M, Borodin D, Dittmar T, Huber A, Kreter A, Martynova Y, Möller S, Rasiński M, Wirtz M, Loewenhoff Th, Dorow-Gerspach D, Yuan Y, Brezinsek S, Unterberg B, Linsmeier Ch 2019 Nucl. Mater. Energy 19 7Google Scholar

    [23]

    Wang B, Hu D Z, Ma D, Lu G H 2018 US10102928B2

    [24]

    Wang B, Hu D Z, Ma D, Lu G H 2016 ZL201410117811. X

    [25]

    Li S D, Wang B, Liu Y H, Qi Y F, Li M, Ma Y T 2018 Chin. J. Vac. Sci. Technol. 38 434

    [26]

    Xiao S, Ma Y, Tian L, Li M, Qi C, Wang B 2020 Nucl. Mater. Energy 23 100746Google Scholar

    [27]

    Wu X C, Xu L P 2002 Phys. Test. Chem. Anal. A Physical Test. 38 14

  • 图 1  叠片结构W-PFM方案 (a)叠片结构示意图; (b)单轴应力示意图

    Fig. 1.  Laminated structure W-PFM scheme: (a) Schematic of laminated structure; (b) schematic of uniaxial stresses.

    图 2  (a) 叠片结构W-PFM样品示意图; (b) 叠片结构W-PFM样品实物图

    Fig. 2.  (a) Schematic diagram of the laminated structure W-PFM sample; (b) physical diagram of laminated structured W-PFM sample.

    图 3  W箔和块体W表面形貌 (a1), (b1), (c1) 0.05 mm, 轧制, 去应力和再结晶W; (a2), (b2), (c2) 0.1 mm, 轧制, 去应力和再结晶W; (a3), (b3), (c3) 3 mm, 轧制, 去应力和再结晶W

    Fig. 3.  The morphology of W foil and bulk W: (a1), (b1), (c1) 0.05 mm, rolled, stress-free, and recrystallied W; (a2), (b2), (c2) 0.1 mm, rolled, stress-free, and recrystallied W; (a3), (b3), (c3) 3 mm: rolled, stress-free, and recrystallied W.

    图 4  不同热处理工艺下的叠片结构W和块状W表面的热损伤形貌 (a1), (b1), (c1) 0.05 mm, 轧制, 去应力和再结晶W; (a2), (b2), (c2) 0.1 mm, 轧制, 去应力和再结晶W; (a3), (b3), (c3) 3 mm, 轧制, 去应力和再结晶W

    Fig. 4.  Thermal damage morphology of laminated W and bulk W under different heat treatment processes: (a1), (b1), (c1) 0.05 mm, rolled, stress-free, and recrystallied W; (a2), (b2), (c2) 0.10 mm, rolled, stress-free, and recrystallied W; (a3), (b3), (c3) 3.00 mm, rolled, stress-free, and recrystallied W.

    图 5  不同热处理工艺下的W箔和块体W表面热损伤区域的微观形貌 (a1), (b1), (c1) 0.05 mm, 轧制, 去应力和再结晶W; (a2), (b2), (c2) 0.10 mm, 轧制, 去应力和再结晶W; (a3), (b3), (c3) 3.00 mm, 轧制, 去应力和再结晶W

    Fig. 5.  Micromorphology of thermal damage area on the surface of W foil and bulk W under different heat treatment processes: (a1), (b1), (c1) 0.05 mm, rolled, stress-free, and recrystallied W; (a2), (b2), (c2) 0.10 mm, rolled, stress-free, and recrystallied W; (a3), (b3), (c3) 3.00 mm, rolled, stress-free, and recrystallied W.

    图 6  不同热处理工艺下叠片结构W和块体W表面裂纹的标定

    Fig. 6.  Calibration of surface cracks of laminated W and bulk W under different heat treatment processes.

    图 7  不同热处理工艺下叠片结构W和块体W表面裂纹的评估参数 (a)裂纹面积密度; (b)主裂纹平均宽度; (c)表面损伤因子

    Fig. 7.  Evaluation parameters of surface crack damage of laminated W and bulk W under different heat treatment processes: (a) Percentage of crack area; (b) average width of main crack; (c) surface damage factor.

    表 1  热处理工艺参数

    Table 1.  Heat treatment process parameters.

    升温速率/(K·min–1) 最高温度/℃ 保温时间/h 降温速率/(K·min–1)
    去应力退火 > 400℃, 15; < 400℃, 20 1000 0.5 > 400℃, 20; < 400℃, 随炉冷却
    再结晶退火 > 400℃, 15; < 400℃, 20 1600 1.0 > 400℃, 20; < 400℃, 随炉冷却
    下载: 导出CSV

    表 2  实验后样品热加载区域表面粗糙度

    Table 2.  Surface roughness of the thermally loaded region of the samples after experimentation

    0.05 mm/
    (Ra·μm–1)
    0.10 mm/
    (Ra·μm–1)
    3.00 mm/
    (Ra·μm–1)
    原始轧制态 0.06 0.14 1.00
    去应力态 0.11 0.40 1.30
    再结晶态 0.18 0.65 2.00
    下载: 导出CSV
  • [1]

    Zhang C, Wang K, Si R, Li J, Song C, Wu S, Yan B, Chen C 2023 Chin. Phys. B 32 113102Google Scholar

    [2]

    Xu C, Wan F R 2023 ActaPhys. Sin. 72 056801 [徐驰, 万发荣 2023 物理学报 72 056801]Google Scholar

    Xu C, Wan F R 2023 ActaPhys. Sin. 72 056801Google Scholar

    [3]

    Qin M F, Wang Y M, Zhang H Y, Sun J Z 2023 ACTA Phys. Sin. 72 245204 [秦梦飞, 王英敏, 张红玉, 孙继忠 2023 物理学报 72 245204]Google Scholar

    Qin M F, Wang Y M, Zhang H Y, Sun J Z 2023 ACTA Phys. Sin. 72 245204Google Scholar

    [4]

    Terra A, Sergienko G, Gago M, Kreter A, Martynova Y, Rasinski M, Wirtz M, Loewenhoff T, Mao Y, Schwalenberg D, Raumann L, Coenen J W, Moeller S, Koppitz T, Dorow-Gerspach D, Brezinsek S, Unterberg B, Linsmeier C 2020 Phys. Scr. 2020 014045

    [5]

    Wirtz M, Linke J, Loewenhoff Th, Pintsuk G, Uytdenhouwen I 2017 Nucl. Mater. Energy 12 148Google Scholar

    [6]

    Wang L, Wang B, Li S D, Ma D, Tang Y H, Yan H 2016 Int. J. Refract. Met. Hard Mater. 61 61Google Scholar

    [7]

    Loewenhoff Th, Linke J, Pintsuk G, Thomser C 2012 Fusion Eng. Des. 87 1201Google Scholar

    [8]

    Pintsuk G, Prokhodtseva A, Uytdenhouwen I 2011 J. Nucl. Mater. 417 481Google Scholar

    [9]

    Linke J, Loewenhoff T, Massaut V, Pintsuk G, Ritz G, Rödig M, Schmidt A, Thomser C, Uytdenhouwen I, Vasechko V, Wirtz M 2011 Nucl. Fusion 51 073017Google Scholar

    [10]

    Garkusha I E, Landman I, Linke J, Makhlaj V A, Medvedev A V, Malykhin S V, Peschanyi S, Pintsuk G, Pugachev A T, Tereshin V I 2011 J. Nucl. Mater. 415 S65Google Scholar

    [11]

    Pintsuk G, Kühnlein W, Linke J, Rödig M 2007 Fusion Eng. Des. 82 1720Google Scholar

    [12]

    Wang Y, Wang H, Mi B, Zhao J, Zhang C 2023 J. Nucl. Mater. 583 154555Google Scholar

    [13]

    Wirtz M, Linke J, Loewenhoff T, Pintsuk G, Uytdenhouwen I 2016 Phys. Scr. T167 014015Google Scholar

    [14]

    Rieth M, Dudarev S L, Gonzalez De Vicente S M, et al. 2013 J. Nucl. Mater. 432 482Google Scholar

    [15]

    Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz R J, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You J H, Pippan R 2013 J. Nucl. Mater. 442 S181Google Scholar

    [16]

    Parkes N, Dodds R, Watson A, Dye D, Hardie C, Humphry-Baker S A, Knowles A J 2023 Int. J. Refract. Met. Hard Mater. 113 106209Google Scholar

    [17]

    Alam M E, Odette G R 2023 Nucl. Mater. Energy 36 101467Google Scholar

    [18]

    Yang T, Wang J, Feng F, Liu X, Youyun L, Xueyu G 2023 Fusion Eng. Des. 196 113991Google Scholar

    [19]

    Dang N, Lian Y, Song J, Dai S, Yan B, Fan F, Wang J, Liu X 2023 Int. J. Refract. Met. Hard Mater. 117 106415Google Scholar

    [20]

    Coenen J W, Mao Y, Sistla S, Riesch J, Hoeschen T, Broeckmann Ch, Neu R, Linsmeier Ch 2018 Nucl. Mater. Energy 15 214Google Scholar

    [21]

    Neu R, Coenen J W, Curzadd B, Gietl H, Greuner H, Höschen T, Hunger K, Lürbke R, Müller A, Riesch J, Schlick G, Siefken U, Visca E, You J 2023 Mater. Res. Express 10 116516Google Scholar

    [22]

    Terra A, Sergienko G, Tokar M, Borodin D, Dittmar T, Huber A, Kreter A, Martynova Y, Möller S, Rasiński M, Wirtz M, Loewenhoff Th, Dorow-Gerspach D, Yuan Y, Brezinsek S, Unterberg B, Linsmeier Ch 2019 Nucl. Mater. Energy 19 7Google Scholar

    [23]

    Wang B, Hu D Z, Ma D, Lu G H 2018 US10102928B2

    [24]

    Wang B, Hu D Z, Ma D, Lu G H 2016 ZL201410117811. X

    [25]

    Li S D, Wang B, Liu Y H, Qi Y F, Li M, Ma Y T 2018 Chin. J. Vac. Sci. Technol. 38 434

    [26]

    Xiao S, Ma Y, Tian L, Li M, Qi C, Wang B 2020 Nucl. Mater. Energy 23 100746Google Scholar

    [27]

    Wu X C, Xu L P 2002 Phys. Test. Chem. Anal. A Physical Test. 38 14

  • [1] 张国帅, 尹超, 王兆繁, 陈泽, 毛世峰, 叶民友. 中子辐照诱导钨再结晶的模拟研究. 物理学报, 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [2] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析. 物理学报, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [3] 张伟光, 张凯奋, 夏立东, 黄鑫, 周晓松, 彭述明, 施立群. 氘氚冰籽晶的形核行为. 物理学报, 2022, 71(2): 025203. doi: 10.7498/aps.71.20211018
    [4] 张伟光, 张凯奋, 夏立东, 黄鑫, 周晓松, 彭述明, 施立群. 氘氚冰籽晶形核行为研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211018
    [5] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [6] 张恩浩, 蔡洪波, 杜报, 田建民, 张文帅, 康洞国, 朱少平. 激光聚变黑腔中等离子体的热流研究. 物理学报, 2020, 69(3): 035204. doi: 10.7498/aps.69.20191423
    [7] 李新霞, 李国壮, 刘洪波. 中国聚变工程实验堆等离子体螺旋波阻尼系数的研究. 物理学报, 2020, 69(14): 145201. doi: 10.7498/aps.69.20200222
    [8] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [9] 马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波. 氦离子显微镜对钨中氦行为的实验研究. 物理学报, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [10] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响. 物理学报, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [11] 孙振月, 桑超峰, 胡万鹏, 王德真. 偏滤器等离子体中杂质对钨壁材料的侵蚀模拟研究. 物理学报, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [12] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [13] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [14] 郭龙婷, 孙继忠, 黄艳, 刘升光, 王德真. 低能氢粒子沿不同角度轰击钨(001)表面的反射概率及入射深度分布的分子动力学研究. 物理学报, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [15] 张治海, 孙继忠, 刘升光, 王德真. 载能氢原子与石墨(001)面碰撞过程中的能量传递行为的分子动力学研究. 物理学报, 2012, 61(4): 047901. doi: 10.7498/aps.61.047901
    [16] 李守阳, 孙继忠, 张治海, 刘升光, 王德真. 单空位缺陷对载能氢原子与石墨层间碰撞的能量交换的影响的分子动力学研究. 物理学报, 2011, 60(5): 057901. doi: 10.7498/aps.60.057901
    [17] 刘金远, 陈龙, 王丰, 王楠, 段萍. 聚变等离子体中尘埃杂质的带电和运动特性及温度变化研究. 物理学报, 2010, 59(12): 8692-8700. doi: 10.7498/aps.59.8692
    [18] 施研博, 应阳君, 李金鸿. α粒子的慢化过程对D-T等离子体聚变燃烧的影响. 物理学报, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [19] 罗正明, 滕礼坚. 快粒子在聚变等离子体中的慢化及能量增益研究. 物理学报, 1982, 31(9): 1166-1175. doi: 10.7498/aps.31.1166
    [20] 霍裕昆. 聚变等离子体中α粒子的慢化-扩散. 物理学报, 1980, 29(3): 320-329. doi: 10.7498/aps.29.320
计量
  • 文章访问数:  1906
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-02-13
  • 上网日期:  2024-04-10
  • 刊出日期:  2024-06-05

/

返回文章
返回