搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究

黄艳 孙继忠 桑超峰 丁芳 王德真

引用本文:
Citation:

边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究

黄艳, 孙继忠, 桑超峰, 丁芳, 王德真

Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes

Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen
PDF
导出引用
  • 在高约束模式下发生的边界局域模会释放高能量等离子体,其中主要部分会辐照到面积相对较小的偏滤器靶板,偏滤器钨靶板发生热腐蚀的可能性最大. 本文建立了包括了熔化、汽化和热辐射效应的一维热传导模型,采用数值模拟的方法,研究了EAST未来偏滤器钨靶板在边界局域模作用下的热腐蚀程度. 根据现有的边界局域模热流数据和多种未来可能的高能量边界局域模热流数据,计算了钨靶板的表面温度分布. 结果显示当前的第一类边界局域模作用在钨靶板上,在高约束模式运行时间取32 s 情况下,靶板表面温度从350 K增加到373 K,表明在当前的参数范围内,只要避免其他更严重的瞬时事件如破裂的发生,边界局域模还不会带来严重的威胁;如果边界局域模的能量增加到接近未来托卡马克边界局域模的能量范围1 MJ/m2,沉积时间为600 μs,表面最大熔化厚度将达到6.8–6.9 μm.
    Edge localized modes (ELMs) in company with high-confinement mode (H-mode) will release high energy plasma fluxes to the scrape of layer (SOL). Large portions of these high heat fluxes will eventually irradiate the divertor target plates, and may erode, even melt them. In this paper, we develope a one-dimensional heat conductivity model including evaporation, radiation, melting processes of tungsten to study the erosion of the divertor tungsten targets caused by ELMs in EAST at the current and possible future operation parameters. Based on both experimental data of heat fluxes on the carbon-fibre composites divertor in EAST and possible future data of high heat fluxes, the surface temperature of slab-shaped tungsten is evaluated numerically by solving the one-dimensional model. It is found that the current Type I ELMs do not cause any noticeable changes of the tungsten target, the surface temperature being raised only several tens of degrees. Simulation results show that ELMs will not become a problem for EAST tungsten wall for the time being and the near future as long as much more severe transient events, e.g., disruption, can be avoided. When deposition energy is increased to 1 MJ/m2 with a duration of 600 μs, the tungsten plate will melt for a layer as thick as 6.8 μm.
    • 基金项目: 国际热核聚变实验堆(ITER)计划专项(批准号:2013GB109001,2013GB107003)、国家自然科学基金(批准号:11275042,11205198)和中央高校基本科研业务费专项资金(批准号:DUT13ZD102,DUT12RC(3)53)资助的课题.
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2013GB109001, 2013GB107003), the National Natural Science Foundation of China (Grant Nos. 11275042, 11205198), and the central university basic scientific research business expenses special funds, China (Grant Nos. DUT13ZD102, DUT12RC(3)53).
    [1]

    Jiang M, Xu G S, Xiao C, Guo H Y, Wan B N, Wang H Q, Wang L, Zhang L, Naulin V, Gan K F, Wang D S, Duan Y M, Yan N, Liu P, Ding S Y, Zhang W, Liu S C 2012 Plasma Phys. Control. Fusion 54 095003

    [2]

    Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese) [徐伟, 万宝年, 谢纪康 2003 物理学报 52 1970]

    [3]

    Li M H, Ding B J, Kong E H, Zhang L, Zhang X J, Qian J P, Yan N, Han X F, San J F, Liu F K, Wang M, Xu H D, Wan B N 2011 Chin. Phys. B 20 125202

    [4]

    Wan B N for the EAST and HT-7 Teams and International Collaborators 2009 Nucl. Fusion 49 104011

    [5]

    Gao J M, Li W, Xia Z W, Pan Y D, Lu J, Yi P, Liu Y 2013 Chin. Phys. B 22 015202

    [6]

    Sizyuk V, Hassanein A 2010 Nucl. Fusion 50 115004

    [7]

    Sizyuk V, Hassanein A 2011 J. Nucl. Mater. 415 S881

    [8]

    Hassanein A, Sizyuk T, Sizyuk V, Miloshevsky G 2010 Fusion Eng. Des. 85 1331

    [9]

    Federici G 2003 Plasma Phys. Control. Fusion 45 1523

    [10]

    Semak V V, Damkroger B, Kempka S 1999 J. Phys. D: Appl. Phys. 32 1819

    [11]

    Bazylev B, Wuerz H 2002 J. Nucl. Mater. 307 69

    [12]

    Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (Oxford: Clarendon)

    [13]

    Behrisch R 2010 J. Surf. Invest-X-Ray+ 4 549

    [14]

    Yuan Y, Greuner H, Böswirth B, Krieger K, Luo G N, Xu H Y, Fu B Q, Li M, Liu W 2013 J. Nucl. Mater. 433 523

    [15]

    Wang L, Xu G S, Guo H Y, Wang H Q, Liu S C, Gan K F, Gong X Z, Liang Y, Yan N, Chen L, Liu J B, Zhang W, Chen R, Shao L M, Xiong H, Qian J P, Shen B, Liu G J, Ding R, Zhang X J, Qin C M, Ding S, Xiang L Y, Hu G H, Wu Z W, Luo G N, Chen J L, Hu L Q, Gao X, Wan B N, Li J G, the EAST Team 2013 Nucl. Fusion 53 073028

    [16]

    Hill D N 1997 J. Nucl. Mater. 241 182

    [17]

    Miloshevsky G V, Hassanein A 2010 Nucl. Fusion 50 115005

    [18]

    Kirk A, Liu Y Q, Chapman I T, Harrison J, Nardon E, Scannell R, Thornton A J, the MAST Team 2013 Plasma Phys. Control. Fusion 55 045007

    [19]

    Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong M, Xu M, Yuan B S, Rhee T, Kwon J M, Shi Z B, Rao J, Lei G J, Cao J Y, Zhou J, Huang M, YU D L, Huang Y, Zhao K J, Cui Z Y, Song X M, Gao Y D, Zhang Y P, Cheng J, Han X Y, Zhou Y, Dong Y B, Ji X Q, Yang Q W, Liu Y, Yan L W, Duan X R, Liu Y, the HL-2A Team 2012 Nucl. Fusion 52 114027

    [20]

    Sang C F, Sun J Z, Wang D Z 2011 J. Nucl. Mater. 415 S204

  • [1]

    Jiang M, Xu G S, Xiao C, Guo H Y, Wan B N, Wang H Q, Wang L, Zhang L, Naulin V, Gan K F, Wang D S, Duan Y M, Yan N, Liu P, Ding S Y, Zhang W, Liu S C 2012 Plasma Phys. Control. Fusion 54 095003

    [2]

    Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese) [徐伟, 万宝年, 谢纪康 2003 物理学报 52 1970]

    [3]

    Li M H, Ding B J, Kong E H, Zhang L, Zhang X J, Qian J P, Yan N, Han X F, San J F, Liu F K, Wang M, Xu H D, Wan B N 2011 Chin. Phys. B 20 125202

    [4]

    Wan B N for the EAST and HT-7 Teams and International Collaborators 2009 Nucl. Fusion 49 104011

    [5]

    Gao J M, Li W, Xia Z W, Pan Y D, Lu J, Yi P, Liu Y 2013 Chin. Phys. B 22 015202

    [6]

    Sizyuk V, Hassanein A 2010 Nucl. Fusion 50 115004

    [7]

    Sizyuk V, Hassanein A 2011 J. Nucl. Mater. 415 S881

    [8]

    Hassanein A, Sizyuk T, Sizyuk V, Miloshevsky G 2010 Fusion Eng. Des. 85 1331

    [9]

    Federici G 2003 Plasma Phys. Control. Fusion 45 1523

    [10]

    Semak V V, Damkroger B, Kempka S 1999 J. Phys. D: Appl. Phys. 32 1819

    [11]

    Bazylev B, Wuerz H 2002 J. Nucl. Mater. 307 69

    [12]

    Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (Oxford: Clarendon)

    [13]

    Behrisch R 2010 J. Surf. Invest-X-Ray+ 4 549

    [14]

    Yuan Y, Greuner H, Böswirth B, Krieger K, Luo G N, Xu H Y, Fu B Q, Li M, Liu W 2013 J. Nucl. Mater. 433 523

    [15]

    Wang L, Xu G S, Guo H Y, Wang H Q, Liu S C, Gan K F, Gong X Z, Liang Y, Yan N, Chen L, Liu J B, Zhang W, Chen R, Shao L M, Xiong H, Qian J P, Shen B, Liu G J, Ding R, Zhang X J, Qin C M, Ding S, Xiang L Y, Hu G H, Wu Z W, Luo G N, Chen J L, Hu L Q, Gao X, Wan B N, Li J G, the EAST Team 2013 Nucl. Fusion 53 073028

    [16]

    Hill D N 1997 J. Nucl. Mater. 241 182

    [17]

    Miloshevsky G V, Hassanein A 2010 Nucl. Fusion 50 115005

    [18]

    Kirk A, Liu Y Q, Chapman I T, Harrison J, Nardon E, Scannell R, Thornton A J, the MAST Team 2013 Plasma Phys. Control. Fusion 55 045007

    [19]

    Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong M, Xu M, Yuan B S, Rhee T, Kwon J M, Shi Z B, Rao J, Lei G J, Cao J Y, Zhou J, Huang M, YU D L, Huang Y, Zhao K J, Cui Z Y, Song X M, Gao Y D, Zhang Y P, Cheng J, Han X Y, Zhou Y, Dong Y B, Ji X Q, Yang Q W, Liu Y, Yan L W, Duan X R, Liu Y, the HL-2A Team 2012 Nucl. Fusion 52 114027

    [20]

    Sang C F, Sun J Z, Wang D Z 2011 J. Nucl. Mater. 415 S204

  • [1] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 物理学报, 2024, 73(18): 1-10. doi: 10.7498/aps.73.20240730
    [2] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [3] 张国帅, 尹超, 王兆繁, 陈泽, 毛世峰, 叶民友. 中子辐照诱导钨再结晶的模拟研究. 物理学报, 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [4] 黄艳, 孙继忠, 桑超峰, 王德真. ITER 第一类边界局域模对排布位错偏滤器靶板钨/铜瓦片腐蚀程度的数值模拟. 物理学报, 2023, 72(18): 185202. doi: 10.7498/aps.72.20230281
    [5] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [6] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度. 物理学报, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [7] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [8] 蒋元祺. 难熔金属钒熔化行为的局域原子结构模拟与分析. 物理学报, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [9] 马玉田, 刘俊标, 韩立, 田利丰, 王学聪, 孟祥敏, 肖善曲, 王波. 氦离子显微镜对钨中氦行为的实验研究. 物理学报, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [10] 黄艳, 孙继忠, 桑超峰, 胡万鹏, 王德真. 边界局域模引起钨偏滤器靶板侵蚀和形貌变化的数值模拟研究. 物理学报, 2017, 66(3): 035201. doi: 10.7498/aps.66.035201
    [11] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响. 物理学报, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [12] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [13] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [14] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究. 物理学报, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [15] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [16] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [17] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [18] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [19] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [20] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究. 物理学报, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
计量
  • 文章访问数:  6580
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-15
  • 修回日期:  2013-10-08
  • 刊出日期:  2014-02-05

/

返回文章
返回