搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

难熔金属钒熔化行为的局域原子结构模拟与分析

蒋元祺

引用本文:
Citation:

难熔金属钒熔化行为的局域原子结构模拟与分析

蒋元祺

Simulation and analysis of melting behavior of local atomic structure of refractory metals vanadium

Jiang Yuan-Qi
PDF
HTML
导出引用
  • 采用经典分子动力学(molecular dynamics, MD)方法, 模拟了16000个钒原子在5种不同熔化速率(γ1 = 1 × 1011 K/s, γ2 = 1 × 1012 K/s, γ3 = 1 × 1013 K/s, γ4 = 1 × 1014 K/s 与γ5 = 1 × 1015 K/s)下原子结构的熔化行为. 结果表明: 不同熔化速率对难熔金属钒的熔点影响明显, 不过随着温度升高, 体系特征原子结构诸如体心立方(BCC)、六角密堆(HCP)、面心立方(FCC)、简单立方(SC)以及二十面体(ICO)的相对分布次序并不随熔化速率的改变而改变, 温度仍然是影响原子结构分布的主要因素. 通过从头算分子动力学(ab initio MD)与热力学分析发现, ICO能够在液态金属区域稳定存在, 一方面是因为其孤立团簇的相对稳定性和团簇寿命要优于晶体型原子团簇, 另一方面是因为其拥有相对较高的团簇熵与相对较低的自由能.
    By using large-scale atomic/molecular massively parallel simulator (LAMMPS) code, a molecular dynamics simulation is performed in the NPT ensemble at zero pressure to investigate the influence of melting rates γ on the evolutional characteristics of vanadium atomic structure such as body-centered cubic (BCC), hexagonal close-packed structure (HCP), face centered cubic (FCC), simple cubic (SC) and icosahedra (ICO) during the rapid melting of solid vanadium crystal at five different melting rates (γ1 = 1 × 1011 K/s, γ2 = 1 × 1012 K/s, γ3 = 1 × 1013 K/s, γ4 = 1 × 1014 K/s , γ5 = 1 × 1015 K/s), in which 16000 atoms in a cubic box under the periodic boundary condition are considered, and their motion equations are solved by Verlet’s algorithm in the velocity form in time steps of 1 fs. Constant pressure P and temperature T are imposed by a modified Nose-Hoover method for both P and T variables, and an embedded-atom model (EAM) potential is utilized. For identifying the local atomic structures of liquid and solid vanadium at different temperatures, a polyhedral template matching method (PTMM) is used by measuring the root-mean square deviation (RMSD), in which clusters are classified as the topology of the local atomic environment without any ambiguity in the classification. Subsequently, the variation of the potential energy, entropy and Gibbs free energy of FCC, HCP, BCC and ICO vanadium clusters are calculated through ab initio MD simulation in the canonical ensemble (NVT) at selected temperatures, and the lowest-energy dynamic structure and its corresponding static heating structure are also shown in this paper. Based on the above calculated results, it is found that the melting point of refractory metal vanadium increases obviously with the increase of heating rate, but the heating rate only presents a limited effect on the population of atomic structure for each of BCC, HCP, FCC, SC and ICO. Namely, the temperature still plays a dominant role in the rapid melting process of V rather than heating rate. Moreover, the ab initio MD simulation and thermodynamics analysis further reveal that lots of ICO clusters of vanadium can exist stably in the liquid region rather than in solid crystal, which is not only due to its higher stability and longer lifetime than those of crystalline atomic clusters, but also because ICO possesses higher entropy and lower Gibbs free energy in high temperature liquid region.
      通信作者: 蒋元祺, yuanqi325@163.com
    • 基金项目: 江西省自然科学基金(批准号: 20202BAB204004, 20171BAB216001)、江西省教育厅科学技术研究项目(批准号: GJJ191114, GJJ161242)、南昌师范学院首批“青蓝学者”人才计划和国家自然科学基金(批准号: 51871096, 11664028)资助的课题
      Corresponding author: Jiang Yuan-Qi, yuanqi325@163.com
    • Funds: Project supported by the Jiangxi Provincial Natural Science Foundation, China (Grant Nos. 20202BAB204004, 20171BAB216001), the Scientific Research Project of Jiangxi Provincial Education Department, China (Grant Nos. GJJ191114, GJJ161242), the Qinglan Scholars Program of Nanchang Normal University, China, and the National Natural Science Foundation of China (Grant Nos. 51871096, 11664028)
    [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [2]

    Baletto F 2005 Rev. Mod. Phys. 77 371Google Scholar

    [3]

    Turci F, Tarjus G, Royall C P 2017 Phys. Rev. Lett. 118 215501Google Scholar

    [4]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801Google Scholar

    [5]

    Sprakel J, Zaccone A, Spaepen F, Schall P, Weitz D 2017 Phys. Rev. Lett. 118 088003Google Scholar

    [6]

    Şopu D, Stukowski A, Stoica M, Scudino S 2017 Phys. Rev. Lett. 119 195503Google Scholar

    [7]

    Jiang Y Q, Wen D D, Peng P 2017 J. Mole. Liquids 230 271Google Scholar

    [8]

    Jiang Y Q, Wen D D, Peng P, Han S C, Hou Z Y 2015 Comput. Mater. Sci. 99 156Google Scholar

    [9]

    Zhong L, Wang J, Sheng H, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [10]

    蒋元祺, 彭平 2018 物理学报 67 132101Google Scholar

    Jiang Y Q, Peng P 2018 Acta Phys. Sin. 67 132101Google Scholar

    [11]

    Jiang Y Q, Peng P 2020 Chin. Phys. B. 29 046105Google Scholar

    [12]

    Jiang Y Q, Wen D D, He W X, Peng P 2018 Mol. Simulat. 44 1183Google Scholar

    [13]

    武振伟, 李茂枝, 徐莉梅, 汪卫华 2017 物理学报 66 176405Google Scholar

    Wu Z W, Li M Z, Xu L M, Wang W H 2017 Acta Phys. Sin. 66 176405Google Scholar

    [14]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 物理学报 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [15]

    孙保安, 王利峰, 邵建华 2017 物理学报 66 178103Google Scholar

    Sun B A, Wang L F, Shao J H 2017 Acta Phys. Sin. 66 178103Google Scholar

    [16]

    Yang M H, Cai B, Sun Y, Zhang F, Wang Y F, Wang C Z, Ho K M 2019 Phys. Rev. Mater. 3 125602Google Scholar

    [17]

    孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华 2018 物理学报 67 126101Google Scholar

    Sun Y T, Wang C, Lü Y M, Hu Y C, Luo P, Liu M, Xian H J, Zhao D Q, Ding D W, Sun B A, Pan M X, Wen P, Bai H Y, Liu Y H, Wang W H 2018 Acta Phys. Sin. 67 126101Google Scholar

    [18]

    Li M X, Zhao S F, Lu Z, Hirata A, Wen P, Bai H Y, Chen M W, Schroers J, Liu Y H, Wang W H 2019 Nature 569 99Google Scholar

    [19]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [20]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376Google Scholar

    [21]

    Wang H Q, Li H F 2015 RSC Adv. 5 94685Google Scholar

    [22]

    Sosso C C, Chen J, Stephen J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078Google Scholar

    [23]

    Taherkhani F, Akbarzadeh H, Rezania H 2014 J. Alloys. Compd. 617 746Google Scholar

    [24]

    Chen L, Wang Q, Xiong L 2017 J. Nanopart. Res. 19 300Google Scholar

    [25]

    Zhang Z, Hu W, Xiao S 2006 Phys. Rev. B 73 125443Google Scholar

    [26]

    Nunez S, Lopez J M, Aguado A 2012 Nanoscale 4 6481Google Scholar

    [27]

    Steenbergen K G, Gaston N 2013 Phys. Chem. Chem. Phys. 15 15325Google Scholar

    [28]

    Taran S, Garip A K, Arslan H 2020 J. Clus. Sci. 10876Google Scholar

    [29]

    Taran S, Garip A K, Arslan H 2020 Chin. Phys. B 29 077801Google Scholar

    [30]

    Elatresh S F, Bonev S A, Gregoryanz E, Ashcroft N W 2016 Phys. Rev. B 94 104107Google Scholar

    [31]

    Zhao C Y, Tao Y, Yu Y S 2020 Int. J. Mass. Tran. 150 119382Google Scholar

    [32]

    Feng D, Feng Y, Yuan S, Zhang X, Wang G 2017 Appl. Therm. Eng. 111 1457Google Scholar

    [33]

    Fang X W, Wang C Z, Yao Y X, Ding Z J, Ho K M 2011 Phys. Rev. B 83 224203Google Scholar

    [34]

    Aguado A, Jarrold M F 2011 Annu. Rev. Phys. Chem. 62 151Google Scholar

    [35]

    Lekka C E, Papaconstantopoulos D A 2007 Surf. Sci. 601 3937Google Scholar

    [36]

    Pyfer K L, Kafader J O, Yalamanchali A, Jarrold M F 2014 J. Phys. Chem. A 118 4900Google Scholar

    [37]

    Haberland H, Hippler T, Donges J, Kostko O, Schmidt M, Issendorff B 2005 Phys. Rev. Lett. 94 035701Google Scholar

    [38]

    Zhang L, Sun H 2010 Phys. Status Solidi 207 1178Google Scholar

    [39]

    Jena P, Sun Q 2018 Chem. Rev. 118 5755Google Scholar

    [40]

    Chacko S, Joshi K, Kanhere D G 2004 Phys. Rev. Lett. 92 135506Google Scholar

    [41]

    Rapacioli M, Tarrat N, Spiegelman F 2018 J. Phys. Chem. A 122 4092Google Scholar

    [42]

    Breaux G.A, Benirschke R C, Sugai T, Kinnear B S, Jarrold M F 2003 Phys. Rev. Lett. 91 215508Google Scholar

    [43]

    Nelli D, Ferrando R 2019 Nanoscale 11 13040Google Scholar

    [44]

    Settem M, Kanjarla A K 2020 Sci. Rep. 10 3296Google Scholar

    [45]

    Wu J, Qi L, You H, Gross A, Li J, Yang H 2012 J. Am. Chem. Soc. 134 11880Google Scholar

    [46]

    Zhang J, Chen J, Hu P, Wang H 2020 Chin. Chem. Lett. 31 890Google Scholar

    [47]

    Mao H K, Chen X J, Ding Y, Li B, Wang B 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [48]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [49]

    Cai J, Ye Y 1996 Phys. Rev. B 54 8398Google Scholar

    [50]

    Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012Google Scholar

    [51]

    Larsen P M, Schmidt S, Schiøtz J 2016 Model. Simul. Mater. Sc. 24 055007Google Scholar

    [52]

    蒋元祺 2015 博士学位论文(长沙: 湖南大学)

    Jiang Y Q 2015 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese)

  • 图 1  5种不同熔化速率下金属钒体系的势能变化与温度之间的演变关系, (b)是(a)的局部放大图

    Fig. 1.  The potential energy of the vanadium metal as a function of temperature at various melting rates γ, (b) is a partial enlarged view of (a).

    图 2  5种不同熔化速率下金属钒体系的体积变化与温度之间的演变关系, (b)是(a)的局部放大图

    Fig. 2.  The volume of the vanadium metal as a function of temperature at various melting rates γ, (b) is a partial enlarged view of (a).

    图 3  不同熔化速率下体系压强随温度的演变关系

    Fig. 3.  The pressure of the vanadium metal as a function of temperature at various melting rates γ.

    图 4  熔化速率为γ2 = 1 × 1012 K/s时RDF在不同温度区间的演变关系

    Fig. 4.  The RDF for vanadium metal at different temperature obtained by rapid heating rate γ2 = 1 × 1012 K/s.

    图 5  晶体钒熔化过程不同类型团簇的演变示意图(γ2 = 1 × 1012 K/s)

    Fig. 5.  Different type atomic schematic diagraph in vanadium system at heating rate γ2 = 1 × 1012 K/s.

    图 6  利用多面体模板匹配法分析得到的5种不同熔化速率下FCC, HCP, BCC, ICO以及SC类型团簇原子随温度的演变关系

    Fig. 6.  The population of the FCC, HCP, BCC, ICO and SC types atoms in V system as a function of temperature obtained from the polyhedral template matching at various rates, respectively.

    图 7  利用多面体模板匹配法分析得到的5种不同熔化速率下各种类型团簇原子分布随温度的演变关系 (a) FCC; (b) HCP; (c) BCC; (d) ICO; (e) SC; (f)其他类型团簇

    Fig. 7.  The fraction of the various types atoms in V system as a function of temperature obtained from the polyhedral template matching at five various rates: (a) FCC; (b) HCP; (c) BCC; (d) ICO; (e) SC; (f) other types atoms counts.

    图 8  FCC, HCP, BCC以及ICO 团簇平均每原子势能随模拟步长的演变趋势 (a) 300 K; (b) 500 K; (c) 1100 K

    Fig. 8.  The variation of the potential energy of per atom of FCC, HCP, BCC and ICO cluster as a function of time step, respectively: (a) 300 K; (b) 500 K; (c) 1100 K

    图 9  FCC, HCP, BCC及ICO 原子团簇的熵与吉布斯自由能随温度的演变关系 (a) 熵; (b) 吉布斯自由能

    Fig. 9.  The variation of the entropy and Gibbs free energy of FCC, HCP, BCC and ICO cluster as a function of temperature, respectively: (a) Entropy; (b) Gibbs free energy.

  • [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [2]

    Baletto F 2005 Rev. Mod. Phys. 77 371Google Scholar

    [3]

    Turci F, Tarjus G, Royall C P 2017 Phys. Rev. Lett. 118 215501Google Scholar

    [4]

    Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801Google Scholar

    [5]

    Sprakel J, Zaccone A, Spaepen F, Schall P, Weitz D 2017 Phys. Rev. Lett. 118 088003Google Scholar

    [6]

    Şopu D, Stukowski A, Stoica M, Scudino S 2017 Phys. Rev. Lett. 119 195503Google Scholar

    [7]

    Jiang Y Q, Wen D D, Peng P 2017 J. Mole. Liquids 230 271Google Scholar

    [8]

    Jiang Y Q, Wen D D, Peng P, Han S C, Hou Z Y 2015 Comput. Mater. Sci. 99 156Google Scholar

    [9]

    Zhong L, Wang J, Sheng H, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [10]

    蒋元祺, 彭平 2018 物理学报 67 132101Google Scholar

    Jiang Y Q, Peng P 2018 Acta Phys. Sin. 67 132101Google Scholar

    [11]

    Jiang Y Q, Peng P 2020 Chin. Phys. B. 29 046105Google Scholar

    [12]

    Jiang Y Q, Wen D D, He W X, Peng P 2018 Mol. Simulat. 44 1183Google Scholar

    [13]

    武振伟, 李茂枝, 徐莉梅, 汪卫华 2017 物理学报 66 176405Google Scholar

    Wu Z W, Li M Z, Xu L M, Wang W H 2017 Acta Phys. Sin. 66 176405Google Scholar

    [14]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 物理学报 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [15]

    孙保安, 王利峰, 邵建华 2017 物理学报 66 178103Google Scholar

    Sun B A, Wang L F, Shao J H 2017 Acta Phys. Sin. 66 178103Google Scholar

    [16]

    Yang M H, Cai B, Sun Y, Zhang F, Wang Y F, Wang C Z, Ho K M 2019 Phys. Rev. Mater. 3 125602Google Scholar

    [17]

    孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华 2018 物理学报 67 126101Google Scholar

    Sun Y T, Wang C, Lü Y M, Hu Y C, Luo P, Liu M, Xian H J, Zhao D Q, Ding D W, Sun B A, Pan M X, Wen P, Bai H Y, Liu Y H, Wang W H 2018 Acta Phys. Sin. 67 126101Google Scholar

    [18]

    Li M X, Zhao S F, Lu Z, Hirata A, Wen P, Bai H Y, Chen M W, Schroers J, Liu Y H, Wang W H 2019 Nature 569 99Google Scholar

    [19]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [20]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376Google Scholar

    [21]

    Wang H Q, Li H F 2015 RSC Adv. 5 94685Google Scholar

    [22]

    Sosso C C, Chen J, Stephen J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078Google Scholar

    [23]

    Taherkhani F, Akbarzadeh H, Rezania H 2014 J. Alloys. Compd. 617 746Google Scholar

    [24]

    Chen L, Wang Q, Xiong L 2017 J. Nanopart. Res. 19 300Google Scholar

    [25]

    Zhang Z, Hu W, Xiao S 2006 Phys. Rev. B 73 125443Google Scholar

    [26]

    Nunez S, Lopez J M, Aguado A 2012 Nanoscale 4 6481Google Scholar

    [27]

    Steenbergen K G, Gaston N 2013 Phys. Chem. Chem. Phys. 15 15325Google Scholar

    [28]

    Taran S, Garip A K, Arslan H 2020 J. Clus. Sci. 10876Google Scholar

    [29]

    Taran S, Garip A K, Arslan H 2020 Chin. Phys. B 29 077801Google Scholar

    [30]

    Elatresh S F, Bonev S A, Gregoryanz E, Ashcroft N W 2016 Phys. Rev. B 94 104107Google Scholar

    [31]

    Zhao C Y, Tao Y, Yu Y S 2020 Int. J. Mass. Tran. 150 119382Google Scholar

    [32]

    Feng D, Feng Y, Yuan S, Zhang X, Wang G 2017 Appl. Therm. Eng. 111 1457Google Scholar

    [33]

    Fang X W, Wang C Z, Yao Y X, Ding Z J, Ho K M 2011 Phys. Rev. B 83 224203Google Scholar

    [34]

    Aguado A, Jarrold M F 2011 Annu. Rev. Phys. Chem. 62 151Google Scholar

    [35]

    Lekka C E, Papaconstantopoulos D A 2007 Surf. Sci. 601 3937Google Scholar

    [36]

    Pyfer K L, Kafader J O, Yalamanchali A, Jarrold M F 2014 J. Phys. Chem. A 118 4900Google Scholar

    [37]

    Haberland H, Hippler T, Donges J, Kostko O, Schmidt M, Issendorff B 2005 Phys. Rev. Lett. 94 035701Google Scholar

    [38]

    Zhang L, Sun H 2010 Phys. Status Solidi 207 1178Google Scholar

    [39]

    Jena P, Sun Q 2018 Chem. Rev. 118 5755Google Scholar

    [40]

    Chacko S, Joshi K, Kanhere D G 2004 Phys. Rev. Lett. 92 135506Google Scholar

    [41]

    Rapacioli M, Tarrat N, Spiegelman F 2018 J. Phys. Chem. A 122 4092Google Scholar

    [42]

    Breaux G.A, Benirschke R C, Sugai T, Kinnear B S, Jarrold M F 2003 Phys. Rev. Lett. 91 215508Google Scholar

    [43]

    Nelli D, Ferrando R 2019 Nanoscale 11 13040Google Scholar

    [44]

    Settem M, Kanjarla A K 2020 Sci. Rep. 10 3296Google Scholar

    [45]

    Wu J, Qi L, You H, Gross A, Li J, Yang H 2012 J. Am. Chem. Soc. 134 11880Google Scholar

    [46]

    Zhang J, Chen J, Hu P, Wang H 2020 Chin. Chem. Lett. 31 890Google Scholar

    [47]

    Mao H K, Chen X J, Ding Y, Li B, Wang B 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [48]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [49]

    Cai J, Ye Y 1996 Phys. Rev. B 54 8398Google Scholar

    [50]

    Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012Google Scholar

    [51]

    Larsen P M, Schmidt S, Schiøtz J 2016 Model. Simul. Mater. Sc. 24 055007Google Scholar

    [52]

    蒋元祺 2015 博士学位论文(长沙: 湖南大学)

    Jiang Y Q 2015 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese)

  • [1] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓. 不凝性气体对纳米通道内水分子流动传热影响的分子动力学模拟. 物理学报, 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [2] 文大东, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平. 液态Ta快凝过程中团簇的遗传及其与局域对称性的关联. 物理学报, 2023, 72(24): 246101. doi: 10.7498/aps.72.20231153
    [3] 华颖鑫, 陈小辉, 李俊, 郝龙, 孙毅, 王玉峰, 耿华运. 钒的冲击熔化原位X射线衍射测量研究. 物理学报, 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [4] 郑治秀, 张林. Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算. 物理学报, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [5] 汪志刚, 黄娆, 文玉华. Pt-Au核-壳结构纳米粒子热稳定性的分子动力学研究. 物理学报, 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [6] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究. 物理学报, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [7] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究. 物理学报, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [8] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究. 物理学报, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [9] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [10] 韩小静, 王音, 林正喆, 张文献, 庄军, 宁西京. 团簇异构体生长概率的理论预测. 物理学报, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [11] 卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇. 银纳米杆高温熔化断裂弛豫性能的原子级模拟研究. 物理学报, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [12] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究. 物理学报, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [13] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究. 物理学报, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [14] 文玉华, 孙世刚, 张杨, 朱梓忠. 铂纳米晶在升温过程中结构演化与熔化特征的原子级模拟研究. 物理学报, 2009, 58(4): 2585-2589. doi: 10.7498/aps.58.2585
    [15] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [16] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [17] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [18] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [19] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [20] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
计量
  • 文章访问数:  7807
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-06
  • 修回日期:  2020-07-10
  • 上网日期:  2020-10-10
  • 刊出日期:  2020-10-20

/

返回文章
返回